Design a single-phase BLDC Motor and Finite- Element Analysis of Stator Slots Structure Effects on the Efficiency

In this paper effect of stator slots structure and switching angle on a cylindrical single-phase brushless direct current motor (BLDC) is analyzed. BLDC motor with three different structures for stator slots is designed by using RMxprt software and efficiency of BLDC motor for different structures in full-load condition has been presented. Then the BLDC motor in different conditions by using Maxwell 3D software is designed and with finite element method is analyzed electromagnetically. At the end with the use of MATLAB software influence of switching angle on motor performance investigated and optimal angle has been determined. The results indicate that with correct choosing of stator slots structure and switching angle, maximum efficiency can be found.

Contourlet versus Wavelet Transform for a Robust Digital Image Watermarking Technique

In this paper, a watermarking algorithm that uses the wavelet transform with Multiple Description Coding (MDC) and Quantization Index Modulation (QIM) concepts is introduced. Also, the paper investigates the role of Contourlet Transform (CT) versus Wavelet Transform (WT) in providing robust image watermarking. Two measures are utilized in the comparison between the waveletbased and the contourlet-based methods; Peak Signal to Noise Ratio (PSNR) and Normalized Cross-Correlation (NCC). Experimental results reveal that the introduced algorithm is robust against different attacks and has good results compared to the contourlet-based algorithm.

Performance and Availability Analyses of PV Generation Systems in Taiwan

The purpose of this article applies the monthly final energy yield and failure data of 202 PV systems installed in Taiwan to analyze the PV operational performance and system availability. This data is collected by Industrial Technology Research Institute through manual records. Bad data detection and failure data estimation approaches are proposed to guarantee the quality of the received information. The performance ratio value and system availability are then calculated and compared with those of other countries. It is indicated that the average performance ratio of Taiwan-s PV systems is 0.74 and the availability is 95.7%. These results are similar with those of Germany, Switzerland, Italy and Japan.

A New True RMS-to-DC Converter in CMOS Technology

This paper presents a new true RMS-to-DC converter circuit based on a square-root-domain squarer/divider. The circuit is designed by employing up-down translinear loop and using of MOSFET transistors that operate in strong inversion saturation region. The converter offer advantages of two-quadrant input current, low circuit complexity, low supply voltage (1.2V) and immunity from the body effect. The circuit has been simulated by HSPICE. The simulation results are seen to conform to the theoretical analysis and shows benefits of the proposed circuit.

Design of Folded Cascode OTA in Different Regions of Operation through gm/ID Methodology

This paper presents an optimized methodology to folded cascode operational transconductance amplifier (OTA) design. The design is done in different regions of operation, weak inversion, strong inversion and moderate inversion using the gm/ID methodology in order to optimize MOS transistor sizing. Using 0.35μm CMOS process, the designed folded cascode OTA achieves a DC gain of 77.5dB and a unity-gain frequency of 430MHz in strong inversion mode. In moderate inversion mode, it has a 92dB DC gain and provides a gain bandwidth product of around 69MHz. The OTA circuit has a DC gain of 75.5dB and unity-gain frequency limited to 19.14MHZ in weak inversion region.

Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization

This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.

Speech Recognition Using Scaly Neural Networks

This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.

Mobile Qibla and Prayer Time Finder using PDA and External Digital Compass

These days people love to travel around the world. Regardless of their location and time, they especially Muslims still need to perform their prayers. Normally for travelers, they need to bring maps, compass and for Muslim, they even have to bring Qibla pointer when they travel. It is slightly difficult to determine the Qibla direction and to know the time for each prayer. As the technology grows, many PDA equip with maps and GPS to locate their location. In this paper we present a new electronic device called Mobile Qibla and Prayer Time Finder to locate the Qibla direction and to determine each prayer time based on the current user-s location using PDA. This device use PIC microcontroller equipped with digital compass where it will communicate with PDA using Bluetooth technology and display the exact Qibla direction and prayer time automatically at any place in the world. This device is reliable and accurate in determining the Qibla direction and prayer time.

FPGA Implement of a Vision Based Lane Departure Warning System

Using vision based solution in intelligent vehicle application often needs large memory to handle video stream and image process which increase complexity of hardware and software. In this paper, we present a FPGA implement of a vision based lane departure warning system. By taking frame of videos, the line gradient of line is estimated and the lane marks are found. By analysis the position of lane mark, departure of vehicle will be detected in time. This idea has been implemented in Xilinx Spartan6 FPGA. The lane departure warning system used 39% logic resources and no memory of the device. The average availability is 92.5%. The frame rate is more than 30 frames per second (fps).

Delay-independent Stabilization of Linear Systems with Multiple Time-delays

The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.

Power Forecasting of Photovoltaic Generation

Photovoltaic power generation forecasting is an important task in renewable energy power system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic power generation forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic power generation forecasting error.

PM Electrical Machines Diagnostic - Methods Selected

This paper presents a several diagnostic methods designed to electrical machinesespecially for permanent magnets (PM) machines. Those machines are commonly used in small wind and water systems and vehicles drives.Thosemethodsare preferred by the author in periodic diagnostic of electrical machines. The special attentionshould be paid to diagnostic method of turn-to-turn insulation and vibrations. Both of those methodswere createdinInstitute of Electrical Drives and MachinesKomel. The vibration diagnostic method is the main thesis of author’s doctoral dissertation. This is method of determination the technical condition of PM electrical machine basing on its own signals is the subject of patent application No P.405669. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical machines with permanent magnets and there was no method found to determine the technical condition of such machine basing on their own signals.

Mounting Time Reduction using Content-Based Block Management for NAND Flash File System

The flash memory has many advantages such as low power consumption, strong shock resistance, fast I/O and non-volatility. And it is increasingly used in the mobile storage device. The YAFFS, one of the NAND flash file system, is widely used in the embedded device. However, the existing YAFFS takes long time to mount the file system because it scans whole spare areas in all pages of NAND flash memory. In order to solve this problem, we propose a new content-based flash file system using a mounting time reduction technique. The proposed method only scans partial spare areas of some special pages by using content-based block management. The experimental results show that the proposed method reduces the average mounting time by 87.2% comparing with JFFS2 and 69.9% comparing with YAFFS.

Depressing Turbine-Generator Supersynchronous Torsional Torques by Using Virtual Inertia

Single-pole switching scheme is widely used in the Extra High Voltage system. However, the substantial negativesequence current injected to the turbine-generators imposes the electromagnetic (E/M) torque of double system- frequency components during the dead time (between single-pole clearing and line reclosing). This would induce supersynchronous resonance (SPSR) torque amplifications on low pressure turbine generator blades and even lead to fatigue damage. This paper proposes the design of a mechanical filter (MF) with natural frequency close to double-system frequency. From the simulation results, it is found that such a filter not only successfully damps the resonant effect, but also has the characteristics of feasibility and compact.

Power System Damping Using Hierarchical Fuzzy Multi- Input Power System Stabilizer and Static VAR Compensator

This paper proposes the application of a hierarchical fuzzy system (HFS) based on multi-input power system stabilizer (MPSS) and also Static Var Compensator (SVC) in multi-machine environment.The number of rules grows exponentially with the number of variables in a conventional fuzzy logic system. The proposed HFS method is developed to solve this problem. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. In fact, by using HFS the total number of involved rules increases only linearly with the number of input variables. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type Power system stabilizer (PSS). Phasor model of SVC is described and used in this paper. The performances of MPSS, Conventional power system stabilizer (CPSS), hierarchical Fuzzy Multi-input Power System Stabilizer (HFMPSS) and the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. By using digital simulations the comparative study is illustrated. It can be seen that the proposed PSS is performing satisfactorily within the whole range of disturbances.

2-D Realization of WiMAX Channel Interleaver for Efficient Hardware Implementation

The direct implementation of interleaver functions in WiMAX is not hardware efficient due to presence of complex functions. Also the conventional method i.e. using memories for storing the permutation tables is silicon consuming. This work presents a 2-D transformation for WiMAX channel interleaver functions which reduces the overall hardware complexity to compute the interleaver addresses on the fly. A fully reconfigurable architecture for address generation in WiMAX channel interleaver is presented, which consume 1.1 k-gates in total. It can be configured for any block size and any modulation scheme in WiMAX. The presented architecture can run at a frequency of 200 MHz, thus fully supporting high bandwidth requirements for WiMAX.

Variation of Spot Price and Profits of Andhra Pradesh State Grid in Deregulated Environment

In this paper variation of spot price and total profits of the generating companies- through wholesale electricity trading are discussed with and without Central Generating Stations (CGS) share and seasonal variations are also considered. It demonstrates how proper analysis of generators- efficiencies and capabilities, types of generators owned, fuel costs, transmission losses and settling price variation using the solutions of Optimal Power Flow (OPF), can allow companies to maximize overall revenue. It illustrates how solutions of OPF can be used to maximize companies- revenue under different scenarios. And is also extended to computation of Available Transfer Capability (ATC) is very important to the transmission system security and market forecasting. From these results it is observed that how crucial it is for companies to plan their daily operations and is certainly useful in an online environment of deregulated power system. In this paper above tasks are demonstrated on 124 bus real-life Indian utility power system of Andhra Pradesh State Grid and results have been presented and analyzed.

Fuzzy Logic Speed Controller for Direct Vector Control of Induction Motor

This paper presents a new method for the implementation of a direct rotor flux control (DRFOC) of induction motor (IM) drives. It is based on the rotor flux components regulation. The d and q axis rotor flux components feed proportional integral (PI) controllers. The outputs of which are the target stator voltages (vdsref and vqsref). While, the synchronous speed is depicted at the output of rotor speed controller. In order to accomplish variable speed operation, conventional PI like controller is commonly used. These controllers provide limited good performances over a wide range of operations even under ideal field oriented conditions. An alternate approach is to use the so called fuzzy logic controller. The overall investigated system is implemented using dSpace system based on digital signal processor (DSP). Simulation and experimental results have been presented for a one kw IM drives to confirm the validity of the proposed algorithms.

Unit Selection Algorithm Using Bi-grams Model For Corpus-Based Speech Synthesis

In this paper, we present a novel statistical approach to corpus-based speech synthesis. Classically, phonetic information is defined and considered as acoustic reference to be respected. In this way, many studies were elaborated for acoustical unit classification. This type of classification allows separating units according to their symbolic characteristics. Indeed, target cost and concatenation cost were classically defined for unit selection. In Corpus-Based Speech Synthesis System, when using large text corpora, cost functions were limited to a juxtaposition of symbolic criteria and the acoustic information of units is not exploited in the definition of the target cost. In this manuscript, we token in our consideration the unit phonetic information corresponding to acoustic information. This would be realized by defining a probabilistic linguistic Bi-grams model basically used for unit selection. The selected units would be extracted from the English TIMIT corpora.

Automatic Generation Control of Interconnected Power System with Generation Rate Constraintsby Hybrid Neuro Fuzzy Approach

The design of Automatic Generation Control (AGC) system plays a vital role in automation of power system. This paper proposes Hybrid Neuro Fuzzy (HNF) approach for AGC of two-area interconnected reheat thermal power system with the consideration of Generation Rate Constraint (GRC). The advantage of proposed controller is that it can handle the system non-linearities and at the same time the proposed approach is faster than conventional controllers. The performance of HNF controller has been compared with that of both conventional Proportional Integral (PI) controller as well as Fuzzy Logic Controller (FLC) both in the absence and presence of Generation Rate Constraint (GRC). System performance is examined considering disturbance in each area of interconnected power system.