An iTunes U App for Development of Metacognition Skills Delivered in the Enrichment Program Offered to Gifted Students at the Secondary Level

This research aimed to measure the impact of the use of a mobile learning (iTunes U) app for the development of metacognition skills delivered in the enrichment program offered to gifted students at the secondary level in Jeddah. The author targeted a group of students on an experimental scale to evaluate the achievement. The research sample consisted of a group of 38 gifted female students. The scale of evaluation of the metacognition skills used to measure the performance of students in the enrichment program was as follows: Satisfaction scale for the assessment of the technique used and the final product form after completion of the program. Appropriate statistical treatment used includes Paired Samples T-Test Cronbach’s alpha formula and eta squared formula. It was concluded in the results the difference of α≤ 0.05, which means the performance of students in the skills of metacognition in favor of using iTunes U. In light of the conclusion of the experiment, a number of recommendations and suggestions were present; the most important benefit of mobile learning applications is to provide enrichment programs for gifted students in the Kingdom of Saudi Arabia, as well as conducting further research on mobile learning and gifted student teaching.

Risk Assessment of Building Information Modelling Adoption in Construction Projects

Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.

Supporting Densification through the Planning and Implementation of Road Infrastructure in the South African Context

This paper demonstrates a proof of concept whereby shorter trips and land use densification can be promoted through an alternative approach to planning and implementation of road infrastructure in the South African context. It briefly discusses how the development of the Compact City concept relies on a combination of promoting shorter trips and densification through a change in focus in road infrastructure provision. The methodology developed in this paper uses a traffic model to test the impact of synthesized deterrence functions on congestion locations in the road network through the assignment of traffic on the study network. The results from this study demonstrate that intelligent planning of road infrastructure can indeed promote reduced urban sprawl, increased residential density and mixed-use areas which are supported by an efficient public transport system; and reduced dependence on the freeway network with a fixed road infrastructure budget. The study has resonance for all cities where urban sprawl is seemingly unstoppable.

Emotional Association Theory as a Key to Proper Strategy Implementation

Emotional Association (EA) Theory deals with the psychological attachment of the employees to their employer as a focal way of awakening employees’ productivity, innovativeness, and creativity towards achieving a common cause within an organization. The objectives of this paper include: to comprehend the forms of motivation at workstation as provided by the Emotion Association Theory; to improve access to the skills relevant for a good working environment; to raise new skills through knowing the power to influence employees; to improve communication skills as well as researching current leaders and their leadership skills. The paper makes use of descriptive and intervention by examining the effect of motivation on employees. The method makes use of psychological EA theory that analyses the 3E leadership model to impact the ability to adopt the organization’s policy and employee productivity. In this case, the method will assess the workplace culture by assessing personal values and qualities that make master manager in organizations. In addition, the method will apply the theory to support the positive work engagement and its successful implementation to effectively influence employee productivity. The findings of this research showcase the significance motivating employees to increase their productivity as provided by the theory. Nonetheless, it improves sense of belonging among workers in a firm since it is employee-oriented. In addition, it works upon unification of workers within a workplace through mutual respect and empathy which promotes competence and policy implementation. Therefore, emotionally related qualities ignite motivation in workers.

An Evaluation of a Psychotherapeutic Service for Engineering Students: The Role of Race, Gender and Language

Mental health in higher education has received increasing attention over the past few decades. The high academic demands of the engineering degree, coupled with students’ mental health challenges, have led to higher education institutions offering psychotherapeutic services to students. This paper discusses an evaluation of the psychotherapy service at the University of Cape Town. The aim was to determine (i) the efficacy of the service; and (ii) the impact of race, gender, and language of the therapist on the students’ therapeutic process. An online survey was sent to 109 students who attended psychotherapy. The majority expressed favorable experiences of psychotherapy, with reports of increased capacity to engage with their academic work. Most students did not experience the gender, race, or language of the psychologists to be barriers to their therapy. The findings point to a need for ongoing psychological support for students.

Words of Peace in the Speeches of the Egyptian President, Abdulfattah El-Sisi: A Corpus-Based Study

The present study aims primarily at investigating words of peace (lexemes of peace) in the formal speeches of the Egyptian president Abdulfattah El-Sisi in a two-year span of time, from 2018 to 2019. This paper attempts to shed light not only on the contextual use of the antonyms, war and peace, but also it underpins quantitative analysis through the current methods of corpus linguistics. As such, the researchers have deployed a corpus-based approach in collecting, encoding, and processing 30 presidential speeches over the stated period (23,411 words and 25,541 tokens in total). Further, semantic fields and collocational networkzs are identified and compared statistically. Results have shown a significant propensity of adopting peace, including its relevant collocation network, textually and therefore, ideationally, at the expense of war concept which in most cases surfaces euphemistically through the noun conflict. The president has not justified the action of war with an honorable cause or a valid reason. Such results, so far, have indicated a positive sociopolitical mindset the Egyptian president possesses and moreover, reveal national and international fair dealing on arising issues.

Predicting the Success of Bank Telemarketing Using Artificial Neural Network

The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.

A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria

This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.

Identification of Training Topics for the Improvement of the Relevant Cognitive Skills of Technical Operators in the Railway Domain

Technical operators in the railway domain are experts responsible for the supervisory control of the railway power grid as well as of the railway tunnels. The technical systems used to master these demanding tasks are constantly increasing in their degree of automation. It becomes therefore difficult for technical operators to maintain the control over the technical systems and the processes of their job. In particular, the operators must have the necessary experience and knowledge in dealing with a malfunction situation or unexpected event. For this reason, it is of growing importance that the skills relevant for the execution of the job are maintained and further developed beyond the basic training they receive, where they are educated in respect of technical knowledge and the work with guidelines. Training methods aimed at improving the cognitive skills needed by technical operators are still missing and must be developed. Goals of the present study were to identify which are the relevant cognitive skills of technical operators in the railway domain and to define which topics should be addressed by the training of these skills. Observational interviews were conducted in order to identify the main tasks and the organization of the work of technical operators as well as the technical systems used for the execution of their job. Based on this analysis, the most demanding tasks of technical operators could be identified and described. The cognitive skills involved in the execution of these tasks are those, which need to be trained. In order to identify and analyze these cognitive skills a cognitive task analysis (CTA) was developed. CTA specifically aims at identifying the cognitive skills that employees implement when performing their own tasks. The identified cognitive skills of technical operators were summarized and grouped in training topics. For every training topic, specific goals were defined. The goals regard the three main categories; knowledge, skills and attitude to be trained in every training topic. Based on the results of this study, it is possible to develop specific training methods to train the relevant cognitive skills of the technical operators.

Scaling up Potato Economic Opportunities: Evaluation of Youths Participation in Potato Value Chain in Nigeria

The potato value chain when harnessed can engage numerous youths and aid in the fight against poverty, malnutrition and unemployment. This study seeks to evaluate the level of youth participation in the potato value chain in Nigeria. Specifically, this study will examine the extent of youth participation in potato value chain, analyze the cost, benefits and sustainability of youth participation in the potato value chain, identify the factors that can propel or hinder youth participation in the potato value chain and make recommendations that will result in the increase in youth employment in the potato value chain. This study was conducted in the North Central and South East geopolitical zones of Nigeria. A multi stage sampling procedure was used to select 540 youths from the study areas. Focused group discussions and survey approach was used to elicit the required data. The data were analyzed using statistical and econometric tools. The study revealed that the potato value chain is very profitable.

Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System

The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes.

Virtual Reality Learning Environment in Embryology Education

Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.

Providing a Practical Model to Reduce Maintenance Costs: A Case Study in Golgohar Company

In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increase prices. Therefore, the only way to increase profit will be reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Company (GEG) was examined by using of MTBF (Mean Time between Failures) and MTTR (Mean Time to Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.

Quality and Quantity in the Strategic Network of Higher Education Institutions

The study analyzes the quality and the size of the strategic network of higher education institutions and the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented from the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high-quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.

Evaluation of the Execution Effect of the Minimum Grain Purchase Price in Rural Areas

This paper uses the analytic hierarchy process to study the execution effect of the minimum purchase price of grain in different regions and various grain crops. Firstly, for different regions, five indicators including grain yield, grain sown area, gross agricultural production, grain consumption price index, and disposable income of rural residents were selected to construct an evaluation index system. We collect data of six provinces including Hebei Province, Heilongjiang Province and Shandong Province from 2006 to 2017. Then, the judgment matrix is constructed, and the hierarchical single ordering and consistency test are carried out to determine the scoring standard for the minimum purchase price of grain. The ranking of the execution effect from high to low is: Heilongjiang Province, Shandong Province, Hebei Province, Guizhou Province, Shaanxi Province, and Guangdong Province. Secondly, taking Shandong Province as an example, we collect the relevant data of sown area and yield of cereals, beans, potatoes and other crops from 2006 to 2017. The weight of area and yield index is determined by expert scoring method. And the average sown area and yield of cereals, beans and potatoes in 2006-2017 were calculated, respectively. On this basis, according to the sum of products of weights and mean values, the execution effects of different grain crops are determined. It turns out that among the cereals, the minimum purchase price had the best execution effect on paddy, followed by wheat and finally maize. Moreover, among major categories of crops, cereals perform best, followed by beans and finally potatoes. Lastly, countermeasures are proposed for different regions, various categories of crops, and different crops of the same category.

Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour

E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).

Online Graduate Students’ Perspective on Engagement in Active Learning in the United States

As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework.  Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software.  Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email.  Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study.  About 42.9% appreciated syllabus usefulness and professor’s expertise.

Impact of Social Media on the Functioning of the Indian Government: A Critical Analysis

Social media has loomed as the most effective tool in recent times to flag the causes, contents, opinions and direction of any social movement and has demonstrated that it will have a far-reaching effect on government as well. This study focuses on India which has emerged as the fastest growing community on social media. Social movement activists, in particular, have extensively utilized the power of digital social media to streamline the effectiveness of social protest on a particular issue through extensive successful mass mobilizations. This research analyses the role and impact of social media as a power to catalyze the social movements in India and further seeks to describe how certain social movements are resisted, subverted, co-opted and/or deployed by social media. The impact assessment study has been made with the help of cases, policies and some social movement which India has witnessed the assertion of numerous social issues perturbing the public which eventually paved the way for remarkable judicial decisions. The paper concludes with the observations that despite its pros and cons, the impacts of social media on the functioning of the Indian Government have demonstrated that it has already become an indispensable tool in the hands of social media-suave Indians who are committed to bring about a desired change.

Demographic and Socio-Economic Study of the Elderly Population in Kolkata, India

Kolkata, the City of Joy, is a greying metropolis not only in respect of its concrete jungle but also because of the largest population of 60-plus residents that it shelters among all other cities in India. Declining birth and death rates and a negative growth of population indicate that the city has reached the last stage of demographic transition. Thus, the obvious consequence has been the ageing of its population. With this background, the present paper attempts to study the demographic and socio-economic status of the elderly population in Kolkata. Analysis and findings have been based on secondary data obtained from Census of India of various years, Sample Registration System Reports and reports by HelpAge India. Findings show that the elderly population is increasing continuously. With respect to gender, the male elderly outnumbers the female elderly population. The percentage of households having one elderly member is more in the city due to the emergence of the nuclear families and erosion of joint family system. With respect to socio-economic status, those elderly who are the heads of the family are lower in percentages than those in the other age groups. Also, male elderly as head of the family are greater in percentage than female elderly. Elderly in the category of currently married records the highest percentage followed by widowed, never married and lastly, separated or divorced. Male elderly outnumber the female elderly as currently married, while female elderly outnumbers the male elderly in the category of widowed. In terms of living status, the percentage of elderly who are living alone is highest in Kolkata and the reason for staying alone as no support from children also happens to be highest in this city. The literacy rate and higher level of education is higher among the male than female elderly. Higher percentages of female elderly have been found to be with disability. Disability in movement and multiple disabilities have been found to be more common among the elderly population in Kolkata. Percentages of male literate pensioners are highest than other categories. Also, in terms of levels of education male elderly who are graduate and above other than technical degree are the highest receivers of pension. Also, in terms of working status, elderly as non-workers are higher in percentages with the population of elderly females outnumbering the males. The old age dependency ratio in the city is increasing continuously and the ratio is higher among females than male. Thus, it can be stated that Kolkata is witnessing continuous and rapid ageing of its population. Increasing dependency ratio is likely to create pressure on the working population, available civic, social and health amenities. This requires intervention in the form of planning, formulation and implementation of laws, policies, programs and measures to safeguard and improve the conditions of the elderly in Kolkata.

Corporate Social Responsibility Disclosure, Tax Aggressiveness and Sustainability Report Assurance: Evidence from Thailand

This study aims to examine the association between disclosure of social responsibility and tax aggressiveness in developing countries, namely Thailand. This is due to the increasing trend of disclosure of social responsibility in developing countries, even though this disclosure of information is still voluntary. On the other hand, developing countries have low taxation rate and investor protection infrastructures that allow the disclosure of social responsibility to be used opportunistically as a tool to fool the attainment of interests. This study also examines the role of assurance on the association between corporate social responsibility disclosure and tax aggressiveness. The assurance aims to provide confidence that the disclosure of social responsibility by the company is valid. This research builds an index to measure the disclosure of social responsibility based on the rules issued by the innovative Global Reporting. The results of the study are based on a sample of publicly traded companies in Thailand, which showed a positive association between disclosure of corporate social responsibility and tax aggressiveness, but it was further discovered that these results were mitigated by the existence of assurance against disclosure of corporate social responsibility. The results of this study indicate that the disclosure of corporate social responsibility can show that the company cares about the issue of social responsibility but does not automatically make the company as one that holds ethical values ​​in its business practices.