Abstract: According as the Architecture, Engineering and Construction (AEC) Industry projects have grown more complex and larger, the number of utilization of BIM for 3D design and simulation is increasing significantly. Therefore, typical applications of BIM such as clash detection and alternative measures based on 3-dimenstional planning are expanded to process management, cost and quantity management, structural analysis, check for regulation, and various domains for virtual design and construction. Presently, commercial BIM software is operated on single-user environment, so initial cost is so high and the investment may be wasted frequently. Cloud computing that is a next-generation internet technology enables simple internet devices (such as PC, Tablet, Smart phone etc) to use services and resources of BIM software. In this paper, we suggested developing method of the BIM software based on cloud computing environment in order to expand utilization of BIM and reduce cost of BIM software. First, for the benchmarking, we surveyed successful case of BIM and cloud computing. And we analyzed needs and opportunities of BIM and cloud computing in AEC Industry. Finally, we suggested main functions of BIM software based on cloud computing environment and developed a simple prototype of cloud computing BIM software for basic BIM model viewing.
Abstract: This study demonstrates the use of Class F fly ash in
combination with lime or lime kiln dust in the full depth reclamation
(FDR) of asphalt pavements. FDR, in the context of this paper, is a
process of pulverizing a predetermined amount of flexible pavement
that is structurally deficient, blending it with chemical additives and
water, and compacting it in place to construct a new stabilized base
course. Test sections of two structurally deficient asphalt pavements
were reclaimed using Class F fly ash in combination with lime and
lime kiln dust. In addition, control sections were constructed using
cement, cement and emulsion, lime kiln dust and emulsion, and mill
and fill. The service performance and structural behavior of the FDR
pavement test sections were monitored to determine how the fly ash
sections compared to other more traditional pavement rehabilitation
techniques. Service performance and structural behavior were
determined with the use of sensors embedded in the road and Falling
Weight Deflectometer (FWD) tests. Monitoring results of the FWD
tests conducted up to 2 years after reclamation show that the cement,
fly ash+LKD, and fly ash+lime sections exhibited two year resilient
modulus values comparable to open graded cement stabilized
aggregates (more than 750 ksi). The cement treatment resulted in a
significant increase in resilient modulus within 3 weeks of
construction and beyond this curing time, the stiffness increase was
slow. On the other hand, the fly ash+LKD and fly ash+lime test
sections indicated slower shorter-term increase in stiffness. The fly
ash+LKD and fly ash+lime section average resilient modulus values
at two years after construction were in excess of 800 ksi. Additional
longer-term testing data will be available from ongoing pavement
performance and environmental condition data collection at the two
pavement sites.
Abstract: This article presents the simulation, parameterization and optimization of an electromagnet with the C–shaped configuration, intended for the study of magnetic properties of materials. The electromagnet studied consists of a C-shaped yoke, which provides self–shielding for minimizing losses of magnetic flux density, two poles of high magnetic permeability and power coils wound on the poles. The main physical variable studied was the static magnetic flux density in a column within the gap between the poles, with 4cm2 of square cross section and a length of 5cm, seeking a suitable set of parameters that allow us to achieve a uniform magnetic flux density of 1x104 Gaussor values above this in the column, when the system operates at room temperature and with a current consumption not exceeding 5A. By means of a magnetostatic analysis by the finite element method, the magnetic flux density and the distribution of the magnetic field lines were visualized and quantified. From the results obtained by simulating an initial configuration of electromagnet, a structural optimization of the geometry of the adjustable caps for the ends of the poles was performed. The magnetic permeability effect of the soft magnetic materials used in the poles system, such as low– carbon steel (0.08% C), Permalloy (45% Ni, 54.7% Fe) and Mumetal (21.2% Fe, 78.5% Ni), was also evaluated. The intensity and uniformity of the magnetic field in the gap showed a high dependence with the factors described above. The magnetic field achieved in the column was uniform and its magnitude ranged between 1.5x104 Gauss and 1.9x104 Gauss according to the material of the pole used, with the possibility of increasing the magnetic field by choosing a suitable geometry of the cap, introducing a cooling system for the coils and adjusting the spacing between the poles. This makes the device a versatile and scalable tool to generate the magnetic field necessary to perform magnetic characterization of materials by techniques such as vibrating sample magnetometry (VSM), Hall-effect, Kerr-effect magnetometry, among others. Additionally, a CAD design of the modules of the electromagnet is presented in order to facilitate the construction and scaling of the physical device.
Abstract: Although many studies on the assembly technology of
the bridge construction have dealt mostly with on the pier, girder or the
deck of the bridge, studies on the prefabricated barrier have rarely been
performed. For understanding structural characteristics and
application of the concrete barrier in the modular bridge, which is an
assembly of structure members, static loading test was performed.
Structural performances as a road barrier of the three methods,
conventional cast-in-place(ST), vertical bolt connection(BVC) and
horizontal bolt connection(BHC) were evaluated and compared
through the analyses of load-displacement curves, strain curves of the
steel, concrete strain curves and the visual appearances of crack
patterns. The vertical bolt connection(BVC) method demonstrated
comparable performance as an alternative to conventional
cast-in-place(ST) while providing all the advantages of prefabricated
technology. Necessities for the future improvement in nuts
enforcement as well as legal standard and regulation are also
addressed.
Abstract: This paper investigates experimentally and
analytically the torsion behavior of steel fibered high strength self
compacting concrete beams reinforced by GFRP bars. Steel fibered
high strength self compacting concrete (SFHSSCC) and GFRP bars
became in the recent decades a very important materials in the
structural engineering field. The use of GFRP bars to replace steel
bars has emerged as one of the many techniques put forward to
enhance the corrosion resistance of reinforced concrete structures.
High strength concrete and GFRP bars attract designers and
architects as it allows improving the durability as well as the esthetics
of a construction. One of the trends in SFHSSCC structures is to
provide their ductile behavior and additional goal is to limit
development and propagation of macro-cracks in the body of
SFHSSCC elements. SFHSSCC and GFRP bars are tough, improve
the workability, enhance the corrosion resistance of reinforced
concrete structures, and demonstrate high residual strengths after
appearance of the first crack. Experimental studies were carried out
to select effective fiber contents. Three types of volume fraction from
hooked shape steel fibers are used in this study, the hooked steel
fibers were evaluated in volume fractions ranging between 0.0%,
0.75% and 1.5%. The beams shape is chosen to create the required
forces (i.e. torsion and bending moments simultaneously) on the test
zone. A total of seven beams were tested, classified into three groups.
All beams, have 200cm length, cross section of 10×20cm,
longitudinal bottom reinforcement of 3
Abstract: Article presents the geometry and structure
reconstruction procedure of the aircraft model for flatter research
(based on the I22-IRYDA aircraft). For reconstruction the Reverse
Engineering techniques and advanced surface modeling CAD tools
are used. Authors discuss all stages of data acquisition process,
computation and analysis of measured data. For acquisition the three
dimensional structured light scanner was used. In the further sections,
details of reconstruction process are present. Geometry
reconstruction procedure transform measured input data (points
cloud) into the three dimensional parametric computer model
(NURBS solid model) which is compatible with CAD systems.
Parallel to the geometry of the aircraft, the internal structure
(structural model) are extracted and modeled. In last chapter the
evaluation of obtained models are discussed.
Abstract: This paper presents an exact analytical model for
optimizing stability of thin-walled, composite, functionally graded
pipes conveying fluid. The critical flow velocity at which divergence
occurs is maximized for a specified total structural mass in order to
ensure the economic feasibility of the attained optimum designs. The
composition of the material of construction is optimized by defining
the spatial distribution of volume fractions of the material
constituents using piecewise variations along the pipe length. The
major aim is to tailor the material distribution in the axial direction so
as to avoid the occurrence of divergence instability without the
penalty of increasing structural mass. Three types of boundary
conditions have been examined; namely, Hinged-Hinged, Clamped-
Hinged and Clamped-Clamped pipelines. The resulting optimization
problem has been formulated as a nonlinear mathematical
programming problem solved by invoking the MatLab optimization
toolbox routines, which implement constrained function
minimization routine named “fmincon" interacting with the
associated eigenvalue problem routines. In fact, the proposed
mathematical models have succeeded in maximizing the critical flow
velocity without mass penalty and producing efficient and economic
designs having enhanced stability characteristics as compared with
the baseline designs.
Abstract: The major part of light weight timber constructions
consists of insulation. Mineral wool is the most commonly used
insulation due to its cost efficiency and easy handling. The fiber
orientation and porosity of this insulation material enables flowthrough.
The air flow resistance is low. If leakage occurs in the
insulated bay section, the convective flow may cause energy losses
and infiltration of the exterior wall with moisture and particles. In
particular the infiltrated moisture may lead to thermal bridges and
growth of health endangering mould and mildew. In order to prevent
this problem, different numerical calculation models have been
developed. All models developed so far have a potential for
completion. The implementation of the flow-through properties of
mineral wool insulation may help to improve the existing models.
Assuming that the real pressure difference between interior and
exterior surface is larger than the prescribed pressure difference in the
standard test procedure for mineral wool ISO 9053 / EN 29053,
measurements were performed using the measurement setup for
research on convective moisture transfer “MSRCMT".
These measurements show, that structural inhomogeneities of
mineral wool effect the permeability only at higher pressure
differences, as applied in MSRCMT. Additional microscopic
investigations show, that the location of a leak within the
construction has a crucial influence on the air flow-through and the
infiltration rate. The results clearly indicate that the empirical values
for the acoustic resistance of mineral wool should not be used for the
calculation of convective transfer mechanisms.
Abstract: Application of wood in rural construction is diffused
all around the world since remote times. However, its inclusion in
structural design deserves strong support from broad knowledge of
material properties. The pertinent literature reveals the application of
optical methods in determining the complete field displacement on
bodies exhibiting regular as well as irregular surfaces. The use of
moiré techniques in experimental mechanics consists in analyzing the
patterns generated on the body surface before and after deformation.
The objective of this research work is to study the qualitative
deformation behavior of wooden testing specimens under specific
loading situations. The experiment setup follows the literature
description of shadow moiré methods. Results indicate strong
anisotropy influence of the generated displacement field. Important
qualitative as well as quantitative stress and strain distribution were
obtained wooden members which are applicable to rural
constructions.
Abstract: Non-saturated soils that while saturation greatly
decrease their volume, have sudden settlement due to increasing
humidity, fracture and structural crack are called loess soils. Whereas
importance of civil projects including: dams, canals and
constructions bearing this type of soil and thereof problems, it is
required for carrying out more research and study in relation to loess
soils. This research studies shear strength parameters by using
grading test, Atterberg limit, compression, direct shear and
consolidation and then effect of using cement and lime additives on
stability of loess soils is studied. In related tests, lime and cement are
separately added to mixed ratios under different percentages of soil
and for different times the stabilized samples are processed and effect
of aforesaid additives on shear strength parameters of soil is studied.
Results show that upon passing time the effect of additives and
collapsible potential is greatly decreased and upon increasing
percentage of cement and lime the maximum dry density is
decreased; however, optimum humidity is increased. In addition,
liquid limit and plastic index is decreased; however, plastic index
limit is increased. It is to be noted that results of direct shear test
reveal increasing shear strength of soil due to increasing cohesion
parameter and soil friction angle.
Abstract: Today, numerical simulation is a powerful tool to
solve various hydraulic engineering problems. The aim of this
research is numerical solutions of shallow water equations using
finite volume method for Simulations of dam break over wet and dry
bed. In order to solve Riemann problem, Roe-s approximate solver is
used. To evaluate numerical model, simulation was done in 1D and
2D states. In 1D state, two dam break test over dry bed (with and
without friction) were studied. The results showed that Structural
failure around the dam and damage to the downstream constructions
in bed without friction is more than friction bed. In 2D state, two
tests for wet and dry beds were done. Generally in wet bed case,
waves are propagated to canal sides but in dry bed it is not
significant. Therefore, damage to the storage facilities and
agricultural lands in wet bed case is more than in dry bed.
Abstract: The paper presents the brief information on particular results of experimental study focused to the problems of behavior of structural plated components made of fiber-cement-based materials and used in building constructions, exposed to atmospheric physical effects given by the weather changes in the summer period. Weather changes represented namely by temperature and rain cause also the changes of the temperature and moisture of the investigated structural components. This can affect their static behavior that means stresses and deformations, which have been monitored as the main outputs of tests performed. Experimental verification is based on the simulation of the influence of temperature and rain using the defined procedure of warming and water sprinkling with respect to the corresponding weather conditions during summer period in the South Moravian region at the Czech Republic, for which the application of these structural components is mainly planned. Two types of components have been tested: (i) glass-fiber-concrete panels used for building façades and (ii) fiber-cement slabs used mainly for claddings, but also as a part of floor structures or lost shuttering, and so on.
Abstract: The objective of this research is to investigate the
advantages of using large-diameter 0.7 inch prestressing strands in
pretention applications. The advantages of large-diameter strands are
mainly beneficial in the heavy construction applications. Bridges and
tunnels are subjected to a higher daily traffic with an exponential
increase in trucks ultimate weight, which raise the demand for higher
structural capacity of bridges and tunnels. In this research, precast
prestressed I-girders were considered as a case study. Flexure
capacities of girders fabricated using 0.7 inch strands and different
concrete strengths were calculated and compared to capacities of 0.6
inch strands girders fabricated using equivalent concrete strength.
The effect of bridge deck concrete strength on composite deck-girder
section capacity was investigated due to its possible effect on final
section capacity. Finally, a comparison was made to compare the
bridge cross-section of girders designed using regular 0.6 inch strands
and the large-diameter 0.7 inch. The research findings showed that
structural advantages of 0.7 inch strands allow for using fewer bridge
girders, reduced material quantity, and light-weight members. The
structural advantages of 0.7 inch strands are maximized when high
strength concrete (HSC) are used in girder fabrication, and concrete
of minimum 5ksi compressive strength is used in pouring bridge
decks. The use of 0.7 inch strands in bridge industry can partially
contribute to the improvement of bridge conditions, minimize
construction cost, and reduce the construction duration of the project.
Abstract: Typically thermal power plants are located near to
surface coal mines that produce huge amount of fly ash as a waste
byproduct. Disposal of fly ash causes significant economic and
environmental problems. Now-a-days, research is going on for bulk
utilization of fly ash. In order to increase its percentage utilization, an
investigation was carried out to evaluate its potential for haul road
construction. This paper presents the laboratory California bearing
ratio (CBR) tests and evaluates the effect of lime on CBR behavior of
fly ash - mine overburden mixes. Tests were performed with different
percentages of lime (2%, 3%, 6%, and 9%). The results show that the
increase in bearing ratio of fly ash-overburden mixes was achieved
by lime treatment. Scanning electron microscopy (SEM) analyses
were conducted on 28 days cured specimens. The SEM study showed
that the bearing ratio development is related to the microstructural
development.
Abstract: Environmental pollution problems have been globally
main concern in all fields including economy, society and culture into
the 21st century. Beginning with the Kyoto Protocol, the reduction on
the emissions of greenhouse gas such as CO2 and SOX has been a
principal challenge of our day. As most buildings unlike durable goods
in other industries have a characteristic and long life cycle, they
consume energy in quantity and emit much CO2. Thus, for green
building construction, more research is needed to reduce the CO2
emissions at each stage in the life cycle. However, recent studies are
focused on the use and maintenance phase. Also, there is a lack of
research on the initial design stage, especially the structure design.
Therefore, in this study, we propose an optimal design plan
considering CO2 emissions and cost in composite buildings
simultaneously by applying to the structural design of actual building.
Abstract: Construction site safety in China has aroused
comprehensive concern all over the world. It is imperative to
investigate the main causes of poor construction site safety. This paper
divides all the causes into four aspects, namely the factors of workers,
object, environment and management and sets up the accident causes
element system based on Delphi Method. This is followed by the
application of structural equation modeling to examine the importance
of each aspect of causes from the standpoints of different roles related
to the construction respectively. The results indicate that all the four
aspects of factors are in need of improvement, and different roles have
different ideas considering the priority of those factors. The paper has
instructive significance for the practitioners to take measures to
improve construction site safety in China accordingly.
Abstract: Concrete strength evaluated from compression tests
on cores is affected by several factors causing differences from the
in-situ strength at the location from which the core specimen was
extracted. Among the factors, there is the damage possibly occurring
during the drilling phase that generally leads to underestimate the
actual in-situ strength. In order to quantify this effect, in this study
two wide datasets have been examined, including: (i) about 500 core
specimens extracted from Reinforced Concrete existing structures,
and (ii) about 600 cube specimens taken during the construction of
new structures in the framework of routine acceptance control. The
two experimental datasets have been compared in terms of
compression strength and specific weight values, accounting for the
main factors affecting a concrete property, that is type and amount of
cement, aggregates' grading, type and maximum size of aggregates,
water/cement ratio, placing and curing modality, concrete age. The
results show that the magnitude of the strength reduction due to
drilling damage is strongly affected by the actual properties of
concrete, being inversely proportional to its strength. Therefore, the
application of a single value of the correction coefficient, as generally
suggested in the technical literature and in structural codes, appears
inappropriate. A set of values of the drilling damage coefficient is
suggested as a function of the strength obtained from compressive
tests on cores.
Abstract: Explosions may cause intensive damage to buildings
and sometimes lead to total and progressive destruction. Pressures
induced by explosions are one of the most destructive loads a
structure may experience. While designing structures for great
explosions may be expensive and impractical, engineers are looking
for methods for preventing destructions resulted from explosions. A
favorable structural system is a system which does not disrupt totally
due to local explosion, since such structures sustain less loss in
comparison with structural ones which really bear the load and
suddenly disrupt. Designing and establishing vital and necessary
installations in a way that it is resistant against direct hit of bomb and
rocket is not practical, economical, or expedient in many cases,
because the cost of construction and installation with such
specifications is several times more than the total cost of the related
equipment.
Abstract: The design of high-rise building is more often dictated
by its serviceability rather than strength. Structural Engineers are
always striving to overcome challenge of controlling lateral
deflection and storey drifts as well as self weight of structure
imposed on foundation.
One of the most effective techniques is the use of outrigger and
belt truss system in Composite structures that can astutely solve the
above two issues in High-rise constructions.
This paper investigates deflection control by effective utilisation
of belt truss and outrigger system on a 60-storey composite building
subjected to wind loads. A three dimensional Finite Element Analysis
is performed with one, two and three outrigger levels. The reductions
in lateral deflection are 34%, 42% and 51% respectively as compared
to a model without any outrigger system. There is an appreciable
decline in the storey drifts with the introduction of these stiffer
arrangements.
Abstract: Typhoon Morakot hit Taiwan in 2009 and caused
severe damages. The government employs a compulsory relocation
strategy for post-disaster reconstruction. This study analyzes the
impact of this strategy on community solidarity. It employs a multiple
approach for data collection, including semi-structural interview,
secondary data, and documentation. The results indicate that the
government-s strategy for distributing housing has led to conflicts
within the communities. In addition, the relocating process has
stimulated tensions between victims of the disaster and those residents
whose lands were chosen to be new sites for relocation. The
government-s strategy of “collective relocation" also worsened
community integration. In addition, the fact that a permanent housing
community may accommodate people from different places also posts
challenge for the development of new inter-personal relations in the
communities. This study concludes by emphasizing the importance of
bringing social, economic and cultural aspects into consideration for
post-disaster relocation..