Abstract: This paper is mainly concerned with the application of a novel technique of data interpretation to the characterization and classification of measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artifical Neural Networks have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compares with earlier methods.
Abstract: The position and momentum space information entropies
of hydrogen atom are exactly evaluated. Using isospectral
Hamiltonian approach, a family of isospectral potentials is constructed having same energy eigenvalues as that of the original potential. The information entropy content is obtained in position
space as well as in momentum space. It is shown that the information
entropy content in each level can be re-arranged as a function of deformation parameter.
Abstract: The peculiarities of the nanoscale structure-phase
states formed after electroexplosive carburizing and subsequent
electron-beam treatment of technically pure titanium surface in different regimes are established by methods of transmission electron
diffraction microscopy and physical mechanisms are discussed. Electroexplosive carburizing leads to surface layer formation
(40 m thickness) with increased (in 3.5 times) microhardness. It consists of β-titanium, graphite (monocrystals 100-150 nm,
polycrystals 5-10 nm, amorphous particles 3-5nm), TiC (5-10 nm), β-Ti02 (2-20nm). After electron-beam treatment additionally increasing the microhardness the surface layer consists of TiC.
Abstract: A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.
Abstract: Over 90% of the world trade is carried by the
international shipping industry. As most of the countries are
developing, seaborne trade continues to expand to bring benefits for
consumers across the world. Studies show that world trade will
increase 70-80% through shipping in the next 15-20 years. Present
global fleet of 70000 commercial ships consumes approximately 200
million tonnes of diesel fuel a year and it is expected that it will be
around 350 million tonnes a year by 2020. It will increase the
demand for fuel and also increase the concentration of CO2 in the
atmosphere. So, it-s essential to control this massive fuel
consumption and CO2 emission. The idea is to utilize a diesel-wind
hybrid system for ship propulsion. Use of wind energy by installing
modern wing-sails in ships can drastically reduce the consumption of
diesel fuel. A huge amount of wind energy is available in oceans.
Whenever wind is available the wing-sails would be deployed and
the diesel engine would be throttled down and still the same forward
speed would be maintained. Wind direction in a particular shipping
route is not same throughout; it changes depending upon the global
wind pattern which depends on the latitude. So, the wing-sail
orientation should be such that it optimizes the use of wind energy.
We have made a computer programme in which by feeding the data
regarding wind velocity, wind direction, ship-motion direction; we
can find out the best wing-sail position and fuel saving for
commercial ships. We have calculated net fuel saving in certain
international shipping routes, for instance, from Mumbai in India to
Durban in South Africa. Our estimates show that about 8.3% diesel
fuel can be saved by utilizing the wind. We are also developing an
experimental model of the ship employing airfoils (small scale wingsail)
and going to test it in National Wind Tunnel Facility in IIT
Kanpur in order to develop a control mechanism for a system of
airfoils.
Abstract: The ultimate goal of this article is to develop a robust and accurate numerical method for solving hyperbolic conservation laws in one and two dimensions. A hybrid numerical method, coupling a cheap fourth order total variation diminishing (TVD) scheme [1] for smooth region and a Robust seventh-order weighted non-oscillatory (WENO) scheme [2] near discontinuities, is considered. High order multi-resolution analysis is used to detect the high gradients regions of the numerical solution in order to capture the shocks with the WENO scheme, while the smooth regions are computed with fourth order total variation diminishing (TVD). For time integration, we use the third order TVD Runge-Kutta scheme. The accuracy of the resulting hybrid high order scheme is comparable with these of WENO, but with significant decrease of the CPU cost. Numerical demonstrates that the proposed scheme is comparable to the high order WENO scheme and superior to the fourth order TVD scheme. Our scheme has the added advantage of simplicity and computational efficiency. Numerical tests are presented which show the robustness and effectiveness of the proposed scheme.
Abstract: The flow of a third grade fluid in an orthogonal rheometer is studied. We employ the admissible velocity field proposed in [5]. We solve the problem and obtain the velocity field as well as the components for the Cauchy tensor. We compare the results with those from [9]. Some diagrams concerning the velocity and Cauchy stress components profiles are presented for different values of material constants and compared with the corresponding values for a linear viscous fluid.
Abstract: The wind resource in the Italian site of Lendinara
(RO) is analyzed through a systematic anemometric campaign
performed on the top of the bell tower, at an altitude of over 100 m
above the ground. Both the average wind speed and the Weibull
distribution are computed. The resulting average wind velocity is in
accordance with the numerical predictions of the Italian Wind Atlas,
confirming the accuracy of the extrapolation of wind data adopted for
the evaluation of wind potential at higher altitudes with respect to the
commonly placed measurement stations.
Abstract: This paper studies questions of continuous data dependence and uniqueness for solutions of initial boundary value problems in linear micropolar thermoelastic mixtures. Logarithmic convexity arguments are used to establish results with no definiteness assumptions upon the internal energy.
Abstract: A complete spectral representation for the
electromagnetic field of planar multilayered waveguides
inhomogeneously filled with omega media is presented. The problem
of guided electromagnetic propagation is reduced to an eigenvalue
equation related to a 2 ´ 2 matrix differential operator. Using the
concept of adjoint waveguide, general bi-orthogonality relations for
the hybrid modes (either from the discrete or from the continuous
spectrum) are derived. For the special case of homogeneous layers
the linear operator formalism is reduced to a simple 2 ´ 2 coupling
matrix eigenvalue problem. Finally, as an example of application, the
surface and the radiation modes of a grounded omega slab waveguide
are analyzed.
Abstract: Many recent high energy physics calculations
involving charm and beauty invoke wave function at the origin
(WFO) for the meson bound state. Uncertainties of charm and beauty
quark masses and different models for potentials governing these
bound states require a simple numerical algorithm for evaluation of
the WFO's for these bound states. We present a simple algorithm for
this propose which provides WFO's with high precision compared
with similar ones already obtained in the literature.
Abstract: Series of tellurite glass of the system 78TeO2-10PbO-
10Li2O-(2-x)Nd2O3-xEr2O3, where x = 0.5, 1.0, 1.5 and 2.0 was
successfully been made. A study of upconversion luminescence of
the Nd3+/Er3+ co-doped tellurite glass has been carried out. From
Judd-Ofelt analysis, the experimental lifetime, exp. τ of the glass
serie are found higher in the visible region as they varies from
65.17ms to 114.63ms, whereas in the near infrared region (NIR) the
lifetime are varies from 2.133ms to 2.270ms. Meanwhile, the
emission cross section,σ results are found varies from 0.004 x 1020
cm2 to 1.007 x 1020 cm2 with respect to composition. The emission
spectra of the glass are found been contributed from Nd3+ and Er3+
ions by which nine significant transition peaks are observed. The
upconversion mechanism of the co-doped tellurite glass has been
shown in the schematic energy diagrams. In this works, it is found
that the excited state-absorption (ESA) is still dominant in the
upconversion excitation process as the upconversion excitation
mechanism of the Nd3+ excited-state levels is accomplished through a
stepwise multiphonon process. An efficient excitation energy transfer
(ET) has been observed between Nd3+ as a donor and Er3+ as the
acceptor. As a result, respective emission spectra had been observed.
Abstract: The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).
Abstract: The present paper considers the steady free convection
boundary layer flow of a viscoelastic fluid on solid sphere with
Newtonian heating. The boundary layer equations are an order higher
than those for the Newtonian (viscous) fluid and the adherence
boundary conditions are insufficient to determine the solution of
these equations completely. Thus, the augmentation an extra
boundary condition is needed to perform the numerical
computational. The governing boundary layer equations are first
transformed into non-dimensional form by using special
dimensionless group and then solved by using an implicit finite
difference scheme. The results are displayed graphically to illustrate
the influence of viscoelastic K and Prandtl Number Pr parameters on
skin friction, heat transfer, velocity profiles and temperature profiles.
Present results are compared with the published papers and are found
to concur very well.
Abstract: Role of acoustic driving pressure on the
translational-radial dynamics of a moving single bubble
sonoluminescence (m-SBSL) has been numerically
investigated. The results indicate that increase in the
amplitude of the driving pressure leads to increase in the
bubble peak temperature. The length and the shape of the
trajectory of the bubble depends on the acoustic pressure and
because of the spatially dependence of the radial dynamics of
the moving bubble, its peak temperature varies during the
acoustical pulses. The results are in good agreement with the
experimental reports on m-SBSL.
Abstract: This paper proposes the concept of aerocapture with
aerodynamic-environment-adaptive variable geometry flexible
aeroshell that vehicle deploys. The flexible membrane is composed
of thin-layer film or textile as its aeroshell in order to solve some
problems obstructing realization of aerocapture technique.
Multi-objective optimization study is conducted to investigate
solutions and derive design guidelines. As a result, solutions which
can avoid aerodynamic heating and enlarge the corridor width up
to 10% are obtained successfully, so that the effectiveness of this
concept can be demonstrated. The deformation-use optimum
solution changes its drag coefficient from 1.6 to 1.1, along with the
change in dynamic pressure. Moreover, optimization results show
that deformation-use solution requires the membrane for which
upper temperature limit and strain limit are more than 700 K and
120%, respectively, and elasticity (Young-s modulus) is of order of
106 Pa.
Abstract: Cerium-doped lanthanum bromide LaBr3:Ce(5%)
crystals are considered to be one of the most advanced scintillator
materials used in PET scanning, combining a high light yield, fast
decay time and excellent energy resolution. Apart from the correct
choice of scintillator, it is also important to optimise the detector
geometry, not least in terms of source-to-detector distance in order to
obtain reliable measurements and efficiency. In this study a
commercially available 25 mm x 25 mm BrilLanCeTM 380 LaBr3: Ce
(5%) detector was characterised in terms of its efficiency at varying
source-to-detector distances. Gamma-ray spectra of 22Na, 60Co, and
137Cs were separately acquired at distances of 5, 10, 15, and 20cm. As
a result of the change in solid angle subtended by the detector, the
geometric efficiency reduced in efficiency with increasing distance.
High efficiencies at low distances can cause pulse pile-up when
subsequent photons are detected before previously detected events
have decayed. To reduce this systematic error the source-to-detector
distance should be balanced between efficiency and pulse pile-up
suppression as otherwise pile-up corrections would need to be
necessary at short distances. In addition to the experimental
measurements Monte Carlo simulations have been carried out for the
same setup, allowing a comparison of results. The advantages and
disadvantages of each approach have been highlighted.
Abstract: A piston cylinder based high pressure differential
thermal analyzer system is developed to investigate phase
transformations, melting, glass transitions, crystallization behavior of
inorganic materials, glassy systems etc., at ambient to 4 GPa and at
room temperature to 1073 K. The pressure is calibrated by the phase
transition of bismuth and ytterbium and temperature is calibrated
by using thermocouple data chart. The system developed is
calibrated using benzoic acid, ammonium nitrate and it has a
pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K
respectively. The phase transition of Asx Te100-x chalcogenides,
ferrous oxide and strontium boride are studied using the
indigenously developed system.
Abstract: In this work, we analyze the deformation of surface
waves in shallow flows conditions, propagating in a channel of
slowly varying cross-section. Based on a singular perturbation
technique, the main purpose is to predict the motion of waves by
using a dimensionless formulation of the governing equations,
considering that the longitudinal variation of the transversal section
obey a power-law distribution. We show that the spatial distribution
of the waves in the varying cross-section is a function of a kinematic
parameter,κ , and two geometrical parameters εh
and w ε . The above
spatial behavior of the surface elevation is modeled by an ordinary
differential equation. The use of single formulas to model the varying
cross sections or transitions considered in this work can be a useful
approximation to natural or artificial geometrical configurations.
Abstract: Accident in spent fuel pool (SFP) of Fukushima
Daiichi Unit 4 showed the importance of continuous monitoring of the
key environmental parameters such as water temperature, water level,
and radiation level in the SFP at accident conditions. Because the SFP
water temperature is one of the key parameters indicating SFP
conditions, its behavior at accident conditions shall be understood to
prepare appropriate measures. This study estimated temporal change
in the SFP water temperature at Kori Unit 1 with 587 MWe for 1 hour
after initiation of a loss-of-pool-cooling accident. For the estimation,
ANSYS CFX 13.0 code was used. The estimation showed that the
increasing rate of the water temperature was 3.90C per hour and the
SFP water temperature could reach 1000C in 25.6 hours after the
initiation of loss-of-pool-cooling accident.