Abstract: In the past decade, because of wide applications of
hybrid systems, many researchers have considered modeling and
control of these systems. Since switching systems constitute an
important class of hybrid systems, in this paper a method for optimal
control of linear switching systems is described. The method is also
applied on the two-tank system which is a much appropriate system
to analyze different modeling and control techniques of hybrid
systems. Simulation results show that, in this method, the goals of
control and also problem constraints can be satisfied by an
appropriate selection of cost function.
Abstract: In this study, optimization is carried out to find the optimized design of a foam-filled column for the best Specific Energy Absorption (SEA) and Crush Force Efficiency (CFE). In order to maximize SEA, the optimization gives the value of 2.3 for column thickness and 151.7 for foam length. On the other hand to maximize CFE, the optimization gives the value of 1.1 for column thickness and 200 for foam length. Finite Element simulation is run by using this value and the SEA and CFE obtained 1237.76 J/kg and 0.92.
Abstract: Stuck-pipe in drilling operations is one of the most
pressing and expensive problems in the oil industry. This paper
describes a computational simulation and an experimental study of
the hydrodynamic vibrator, which may be used for liquidation of
stuck-pipe problems during well drilling. The work principle of the
vibrator is based upon the known phenomena of Vortex Street of
Karman and the resulting generation of vibrations. We will discuss
the computational simulation and experimental investigations of
vibrations in this device. The frequency of the vibration parameters
has been measured as a function of the wide range Reynolds Number.
The validity of the computational simulation and of the assumptions
on which it is based has been proved experimentally. The
computational simulation of the vibrator work and its effectiveness
was carried out using FLUENT software. The research showed high
degree of congruence with the results of the laboratory tests and
allowed to determine the effect of the granular material features upon
the pipe vibration in the well. This study demonstrates the potential
of using the hydrodynamic vibrator in a well drilling system.
Abstract: Capacity and efficiency of any refrigerating system
diminish rapidly as the difference between the evaporating and
condensing temperature is increased by a reduction in the evaporator
temperature. The single stage vapour compression refrigeration
system using various refrigerants are limited to an evaporator
temperature of -40 0C. Below temperature of -40 0C the either
cascade refrigeration system or multi stage vapour compression
system is employed. Present work describes thermal design of
condenser (HTS), cascade condenser and evaporator (LTS) of
R404A-R508B and R410A-R23 cascade refrigeration system. Heat
transfer area of condenser, cascade condenser and evaporator for
both systems are compared and the effect of condenser and
evaporator temperature on heat-transfer area for both systems is
studied under same operating condition. The results shows that the
required heat-transfer area of condenser and cascade condenser for
R410A-R23 cascade system is lower than the R404A-R508B cascade
system but heat transfer area of evaporator is similar for both the
system. The heat transfer area of condenser and cascade condenser
decreases with increase in condenser temperature (Tc), whereas the
heat transfer area of cascade condenser and evaporator increases with
increase in evaporator temperature (Te).
Abstract: In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate.
Abstract: In this study, a software has been developed to predict
the optimum conditions for drying of cotton based yarn bobbins in a
hot air dryer. For this purpose, firstly, a suitable drying model has
been specified using experimental drying behavior for different
values of drying parameters. Drying parameters in the experiments
were drying temperature, drying pressure, and volumetric flow rate of
drying air. After obtaining a suitable drying model, additional curve
fittings have been performed to obtain equations for drying time and
energy consumption taking into account the effects of drying
parameters. Then, a software has been developed using Visual Basic
programming language to predict the optimum drying conditions for
drying time and energy consumption.
Abstract: A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.
Abstract: The present paper proposes high performance nonlinear
force controllers for a servopneumatic real-time fatigue test
machine. A CompactRIO® controller was used, being fully
programmed using LabVIEW language. Fuzzy logic control
algorithms were evaluated to tune the integral and derivative
components in the development of hybrid controllers, namely a FLC
P and a hybrid FLC PID real-time-based controllers. Their
behaviours were described by using state diagrams. The main
contribution is to ensure a smooth transition between control states,
avoiding discrete transitions in controller outputs. Steady-state errors
lower than 1.5 N were reached, without retuning the controllers.
Good results were also obtained for sinusoidal tracking tasks from
1/¤Ç to 8/¤Ç Hz.
Abstract: This paper presents a unified approach based graph
theory and system theory postulates for the modeling and analysis
of Simple open cycle Gas turbine system. In the present paper, the
simple open cycle gas turbine system has been modeled up to its subsystem
level and system variables have been identified to develop the
process subgraphs. The theorems and algorithms of the graph theory
have been used to represent behavioural properties of the system like
rate of heat and work transfers rates, pressure drops and temperature
drops in the involved processes of the system. The processes have
been represented as edges of the process subgraphs and their limits
as the vertices of the process subgraphs. The system across variables
and through variables has been used to develop terminal equations of
the process subgraphs of the system. The set of equations developed
for vertices and edges of network graph are used to solve the system
for its process variables.
Abstract: The fundamental defect inherent to the thermoforming
technology is wall-thickness variation of the products due to
inadequate thermal processing during production of polymer. A
nonlinear viscoelastic rheological model is implemented for
developing the process model. This model describes deformation
process of a sheet in thermoforming process. Because of relaxation
pause after plug-assist stage and also implementation of two stage
thermoforming process have minor wall-thickness variation and
consequently better mechanical properties of polymeric articles. For
model validation, a comparative analysis of the theoretical and
experimental data is presented.
Abstract: Undoubtedly, chassis is one of the most important
parts of a vehicle. Chassis that today are produced for vehicles are
made up of four parts. These parts are jointed together by screwing.
Transverse parts are called cross member.
This study reviews the stress generated by cyclic laboratory loads
in front cross member of Peugeot 405. In this paper the finite element
method is used to simulate the welding process and to determine the
physical response of the spot-welded joints. Analysis is done by the
Abaqus software.
The Stresses generated in cross member structure are generally
classified into two groups: The stresses remained in form of residual
stresses after welding process and the mechanical stress generated by
cyclic load. Accordingly the total stress must be obtained by
determining residual stress and mechanical stress separately and then
sum them according to the superposition principle.
In order to improve accuracy, material properties including
physical, thermal and mechanical properties were supposed to be
temperature-dependent. Simulation shows that maximum Von Misses
stresses are located at special points. The model results are then
compared to the experimental results which are reported by
producing factory and good agreement is observed.
Abstract: In the classical buckling analysis of rectangular plates
subjected to the concurrent action of shear and uniaxial forces, the
Euler shear buckling stress is generally evaluated separately, so that
no influence on the shear buckling coefficient, due to the in-plane
tensile or compressive forces, is taken into account.
In this paper the buckling problem of simply supported rectangular
plates, under the combined action of shear and uniaxial forces, is
discussed from the beginning, in order to obtain new project formulas
for the shear buckling coefficient that take into account the presence
of uniaxial forces.
Furthermore, as the classical expression of the shear buckling
coefficient for simply supported rectangular plates is considered only
a “rough" approximation, as the exact one is defined by a system of
intersecting curves, the convergence and the goodness of the classical
solution are analyzed, too.
Finally, as the problem of the Euler shear buckling stress
evaluation is a very important topic for a variety of structures, (e.g.
ship ones), two numerical applications are carried out, in order to
highlight the role of the uniaxial stresses on the plating scantling
procedures and the goodness of the proposed formulas.
Abstract: A four-lobe pressure dam bearing which is
produced by cutting two pressure dams on the upper two lobes and
two relief-tracks on the lower two lobes of an ordinary four-lobe
bearing is found to be more stable than a conventional four-lobe
bearing. In this paper a four-lobe pressure dam bearing supporting
rigid and flexible rotors is analytically investigated to determine its
performance when L/D ratio is varied in the range 0.75 to 1.5. The
static and dynamic characteristics are studied at various L/D ratios.
The results show that the stability of a four-lobe pressure dam
bearing increases with decrease in L/D ratios both for rigid as well as
flexible rotors.
Abstract: The hand is one of the essential parts of the body for
carrying out Activities of Daily Living (ADLs). Individuals use their
hands and fingers in everyday activities in the both the workplace
and home. Hand-intensive tasks require diverse and sometimes
extreme levels of exertion, depending on the action, movement or
manipulation involved. The authors have undertaken several studies
looking at grip choice and comfort. It is hoped that in providing
improved understanding of discomfort during ADLs this will aid in
the design of consumer products.
Previous work by the authors outlined a methodology for
calculating pain frequency and pain level for a range of tasks. From
an online survey undertaken by the authors with regards
manipulating objects during everyday tasks, tasks involving
gripping were seen to produce the highest levels of pain and
discomfort. Questioning of the participants showed that cleaning
tasks were seen to be ADL's that produced the highest levels of
discomfort, with women feeling higher levels of discomfort than
men.
This paper looks at the methodology for calculating pain
frequency and pain level with particular regards to gripping
activities. This methodology shows that activities such as mopping,
sweeping and hoovering shows the highest numbers of pain
frequency and pain level at 3112.5 frequency per month while the
pain level per person doing this action was 0.78.The study then uses
thin-film force sensors to analyze the force distribution in the hand
whilst hoovering and compares this for differing grip styles and
genders. Women were seen to have more of their hand under a
higher pressure than men when undertaking hoovering. This
suggests that women may feel greater discomfort than men since
their hand is at a higher pressure more of the time.
Abstract: Car failure detection is a complicated process and
requires high level of expertise. Any attempt of developing an expert
system dealing with car failure detection has to overcome various
difficulties. This paper describes a proposed knowledge-based
system for car failure detection. The paper explains the need for an
expert system and the some issues on developing knowledge-based
systems, the car failure detection process and the difficulties involved
in developing the system. The system structure and its components
and their functions are described. The system has about 150 rules for
different types of failures and causes. It can detect over 100 types of
failures. The system has been tested and gave promising results.
Abstract: The world demand for potable water is
increasing every day with growing population. Desalination
using solar energy is suitable for potable water production
from brackish and seawater. In this paper, we present a
theoretical study of solar distillation in a single basin under
the open environmental conditions of Chabahar-Iran. The still
has a base area of 2000mm×500mm with a glass cover
inclined at 25° in order to obtain extra solar energy. We model
the still and conduct its energy balance equations under minor
assumptions. We computed the temperatures of glass cover,
seawater interface, moist air and bottom using numerical
method. The investigation addressed the following: The still
productivity, distilled water salinity and still performance in
terms of the still efficiency. Calculated still productivity in
July was higher than December. So in this paper, we show
that still productivity is directly functioning of solar radiation.
Abstract: In the present work flow past circular cylinder and
cylinder with rectangular and triangular wake splitter is studied to
improve aerodynamic parameters. The Comparison of drag
coefficient is tabulated for bare cylinder, cylinder with rectangular
and triangular wake splitters. Flow past circular cylinder and cylinder
with triangular and rectangular wake splitter is performed at
Reynoldsnumber 5, 20, 40, 50,80, 100.An incompressible PISO finite
volume code employing a non-staggered grid arrangement is used, a
second order upwind scheme is used for convective terms. The time
discretization is implicit and a Second order Crank-Nicholson scheme
is employed. Length of wake splitter in both configurations is taken
to be equal to diameter of cylinder. Wake length is found to be less
with rectangular wake splitter when compared to bare cylinder and
cylinder with triangular wake splitter. Coefficient of drag is found to
be less for triangular wake splitter when compared to bare cylinder &
cylinder with rectangular wake splitter.
Abstract: In this work, the natural convection in a concentric
annulus between a cold outer inclined square enclosure and heated
inner circular cylinder is simulated for two-dimensional steady
state. The Boussinesq approximation was applied to model the
buoyancy-driven effect and the governing equations were solved
using the time marching approach staggered by body fitted
coordinates. The coordinate transformation from the physical
domain to the computational domain is set up by an analytical
expression. Numerical results for Rayleigh numbers 103 , 104 , 105
and 106, aspect ratios 1.5 , 3.0 and 4.5 for seven different
inclination angles for the outer square enclosure 0o , -30o
, -45o
,
-60o , -90o , -135o , -180o are presented as well. The computed flow
and temperature fields were demonstrated in the form of
streamlines, isotherms and Nusselt numbers variation. It is found
that both the aspect ratio and the Rayleigh number are critical to the
patterns of flow and thermal fields. At all Rayleigh numbers angle
of inclination has nominal effect on heat transfer.
Abstract: The present study deals with the analysis of the cylindrical part of a CNG storage vessel, combining a plastic liner and an over wrapped filament wound composite. Three kind of polymer are used in the present analysis: High density Polyethylene HDPE, Light low density Polyethylene LLDPE and finally blend of LLDPE/HDPE. The effect of the mechanical properties on the behavior of type IV vessel may be then investigated. In the present paper, the effect of the order of the circumferential winding on the stacking sequence may be then investigated. Based on mechanical considerations, the present model provides an exact solution for stresses and deformations on the cylindrical section of the vessel under thermo-mechanical static loading. The result show a good behavior of HDPE liner compared to the other plastic materials. The presence of circumferential winding angle in the stacking improves the rigidity of vessel by improving the burst pressure.
Abstract: Biodiesel as an alternative fuel for diesel engines has been developed for some three decades now. While it is gaining wide acceptance in Europe, USA and some parts of Asia, the same cannot be said of Africa. With more than 35 countries in the continent depending on imported crude oil, it is necessary to look for alternative fuels which can be produced from resources available locally within any country. Hence this study presents performance of single cylinder diesel engine using blends of shea butter biodiesel. Shea butter was transformed into biodiesel by transesterification process. Tests are conducted to compare the biodiesel with baseline diesel fuel in terms of engine performance and exhaust emission characteristics. The results obtained showed that the addition of biodiesel to diesel fuel decreases the brake thermal efficiency (BTE) and increases the brake specific fuel consumption (BSFC). These results are expected due to the lower energy content of biodiesel fuel. On the other hand while the NOx emissions increased with increase in biodiesel content in the fuel blends, the emissions of carbon monoxide (CO), un-burnt hydrocarbon (UHC) and smoke opacity decreased. The engine performance which indicates that the biodiesel has properties and characteristics similar to diesel fuel and the reductions in exhaust emissions make shea butter biodiesel a viable additive or substitute to diesel fuel.