Abstract: Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.
Abstract: Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.
Abstract: Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.
Abstract: The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.
Abstract: High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.
Abstract: This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.
Abstract: Waste polyethylene (PE) is classified as waste low
density polyethylene (LDPE) and waste high density polyethylene
(HDPE) according to their densities. Pyrolysis of plastic waste may
have an important role in dealing with the enormous amounts of
plastic waste produced all over the world, by decreasing their
negative impact on the environment. This waste may be converted
into economically valuable hydrocarbons, which can be used both as
fuels and as feed stock in the petrochemical industry. End product
yields and properties depend on the plastic waste composition.
Pyrolytic biochar is one of the most important products of waste
plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were
co-pyrolyzed together with waste olive pomace. Pyrolysis runs were
performed at temperature 700°C with heating rates of 5°C/min.
Higher pyrolysis oil and gas yields were observed by the using waste
olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive
pomace were 6.37% and 7.26% respectively for 50% olive
pomace doses. The calorific value of HDPE-olive pomace and
LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal.
Abstract: The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.
Abstract: Natural fibers are used in polymer composites to
improve mechanical properties to replace inorganic reinforcing
agents produced by non-renewable resources. The present study
investigates the tensile and flexural behaviors of palm fibers-high
density polyethylene (HDPE) composite as a function of volume
fraction. The surface of the fibers was treated by mercerization
treatments to improve the wetting behavior of the apolar HDPE. The
treatment characterization was obtained by scanning electron
microscopy, X-Ray diffraction and infrared spectroscopy. Results
evidences that a good adhesion interfacial between fibers-matrix
caused an increase strength and modulus flexural as well as tensile
strength in the modified fibers/HDPE composites when compared to
the pure HDPE and untreated fibers reinforced composites.
Abstract: The main objective of incorporating natural fibers such as Henequen microfibers (NF) into the High Density Polyethylene (HDPE) polymer matrix is to reduce the cost and to enhance the mechanical as well as other properties. The Henequen microfibers were chopped manually to 5-7mm in length and added into the polymer matrix at the optimized concentration of 8 wt %. In order to facilitate the link between Henequen microfibers (NF) and HDPE matrix, coupling agent such as Glycidoxy (Epoxy) Functional Methoxy Silane (GPTS) at various concentrations from 0.1%, 0.3%, 0.5%, 0.7%, 0.9% and 1% by weight to the total fibers were added. The tensile strength of the composite increased marginally while % elongation at break of the composites decreased with increase in silane loading by wt %. Tensile modulus and stiffness observed increased at 0.9 wt % GPTS loading. Flexural as well as impact strength of the composite decreased with increase in GPTS loading by weight %. Dielectric strength of the composite also found increased marginally up to 0.5wt % silane loading and thereafter remained constant.
Abstract: Rice husk and kenaf filled with calcium carbonate
(CaCO3) and high density polyethylene (HDPE) composite were
prepared separately using twin-screw extruder at 50rpm. Different
filler loading up to 30 parts of rice husk particulate and kenaf fiber
were mixed with the fixed 30% amount of CaCO3 mineral filler to
produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid
composites. In this study, the effects of natural fiber for both rice
husk and kenaf in CaCO3/HDPE composite on physical, mechanical
and morphology properties were investigated. Field Emission
Scanning Microscope (FeSEM) was used to investigate the impact
fracture surfaces of the hybrid composite. The property analyses
showed that water absorption increased with the presence of kenaf
and rice husk fillers. Natural fibers in composite significantly
influence water absorption properties due to natural characters of
fibers which contain cellulose, hemicellulose and lignin structures.
The result showed that 10% of additional natural fibers into hybrid
composite had caused decreased flexural strength, however additional
of high natural fiber (>10%) filler loading has proved to increase its
flexural strength.
Abstract: Waste silicon carbide (waste SiC) filled high-density
polyethylene (HDPE) with and without surface modifiers were
studied. Two types of surface modifiers namely; high-density
polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The
composites were produced using a two roll mill, extruder and shaped
in a hydraulic compression molding machine. The mechanical
properties of polymer composites such as flexural strength and
modulus, impact strength, tensile strength, stiffness and hardness
were investigated over a range of compositions. It was found that,
flexural strength and modulus, tensile modulus and hardness
increased, whereas impact strength and tensile strength decreased
with the increasing in filler contents, compared to the neat HDPE. At
similar filler content, the effect of both surface modifiers increased
flexural modulus, impact strength, tensile strength and stiffness but
reduced the flexural strength. Morphological investigation using
SEM revealed that the improvement in mechanical properties was
due to enhancement of the interfacial adhesion between waste SiC
and HDPE.
Abstract: In the present work, the effects of additives, including
contents of the added antioxidants and type of the selected metallic
stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on
the thermal stabilities of carbon black (CB)/high density polyethylene
(HDPE) compounds were studied. The results showed that the AO
contents played a key role in the thermal stabilities of the CB/HDPE
compounds — the higher the AO content, the higher the thermal
stabilities. Although the CaSt-containing compounds were slightly
superior to those with ZnSt in terms of the thermal stabilities, the
remaining solid residue of CaSt after heated to the temperature of 600
°C (mainly calcium carbonate (CaCO3) as characterized by the X-ray
diffraction (XRD) technique) seemed to catalyze the decomposition
of CB in the HDPE-based compounds. Hence, the quantification of
CB in the CaSt-containing compounds with a muffle furnace gave an
inaccurate CB content — much lower than actual value. However,
this phenomenon was negligible in the ZnSt-containing system.
Abstract: In this study, first thermoplastic composite materials
/plates that have high ballistic impact resistance were produced. For
this purpose, the thermoplastic prepreg and the vacuum bagging
technique were used to produce a composite material. Thermoplastic
prepregs (resin-impregnated fiber) that are supplied ready to be used,
namely high-density polyethylene (HDPE) was chosen as matrix and
unidirectional glass fiber was used as reinforcement. In order to
compare the fiber configuration effect on mechanical properties,
unidirectional and biaxial prepregs were used. Then the
microstructural properties of the composites were investigated with
scanning electron microscopy (SEM) analysis. Impact properties of
the composites were examined by Charpy impact test and tensile
mechanical tests and then the effects of ultraviolet irradiation were
investigated on mechanical performance.
Abstract: This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.
Abstract: In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.
Abstract: This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites.
Abstract: Shear testing is one of the most complex testing areas where available methods and specimen geometries are different from each other. Therefore, a modified shear test specimen (MSTS) combining the simple uniaxial test with a zone of interest (ZOI) is tested which gives almost the pure shear. In this study, material parameters of polypropylene (PP) and high density polyethylene (HDPE) are first measured by tensile tests with a dogbone shaped specimen. These parameters are then used as an input for the finite element analysis. Secondly, a specially designed specimen (MSTS) is used to perform the shear stress tests in a tensile testing machine to get the results in terms of forces and extension, crack initiation etc. Scanning Electron Microscopy (SEM) is also performed on the shear fracture surface to find material behavior. These experiments are then simulated by finite element method and compared with the experimental results in order to confirm the simulation model. Shear stress state is inspected to find the usability of the proposed shear specimen. Finally, a geometry correction factor can be established for these two materials in this specific loading and geometry with notch using Linear Elastic Fracture Mechanics (LEFM). By these results, strain energy of shear failure and stress intensity factor (SIF) of shear of these two polymers are discussed in the special application of the screw cap opening of the medical or food packages with a temper evidence safety solution.
Abstract: This study was an investigation on the suitability of Lahar/HDPE composite as a primary material for low-cost smallscale biogas digesters. While sources of raw materials for biogas are abundant in the Philippines, cost of the technology has made the widespread utilization of this resource an indefinite proposition. Aside from capital economics, another problem arises with space requirements of current digester designs. These problems may be simultaneously addressed by fabricating digesters on a smaller, household scale to reach a wider market, and to use materials that may accommodate optimization of overall design and fabrication cost without sacrificing operational efficiency. This study involved actual fabrication of the Lahar/HDPE composite at varying composition and geometry, subsequent mechanical and thermal characterization, and implementation of Statistical Analysis to find intrinsic relationships between variables. From the results, Lahar/HDPE composite was found to be feasible for use as digester material from both mechanical and economic standpoints.
Abstract: This study deals with the experimental investigation
and theoretical modeling of Semi crystalline polymeric materials with
a rubbery amorphous phase (HDPE) subjected to a uniaxial cyclic
tests with various maximum strain levels, even at large deformation.
Each cycle is loaded in tension up to certain maximum strain and
then unloaded down to zero stress with N number of cycles. This
work is focuses on the measure of the volume strain due to the
phenomena of damage during this kind of tests. On the basis of
thermodynamics of relaxation processes, a constitutive model for
large strain deformation has been developed, taking into account the
damage effect, to predict the complex elasto-viscoelastic-viscoplastic
behavior of material. A direct comparison between the model
predictions and the experimental data show that the model accurately
captures the material response. The model is also capable of
predicting the influence damage causing volume variation.