A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain context where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ELH-ARAS). Within the ELH-ARAS approach, the decision maker (DMs) can diagnose the results (the ranking of the alternatives) in a decomposed style i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e., the collective final results of all experts are able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ELH-ARAS technique makes it easier for decision-makers to understand the results. Finally, an MCGDM case study is given to illustrate the proposed approach.

The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

This paper aims to provide an interpretation of artificial neural networks (ANNs) and explore some of its implications. The interpretation views ANNs as a memory which encodes instances of experience. An experiment explores the behavior of encoding and retrieval of instances from memory. A localised representation ANN is created that allows control over encoding and retrieved memory sample size and is experimented with using the MNIST digits dataset. The relationship between input familiarity, conflict within retrieved samples, and error rates is described and demonstrated to be an effective driver for memory encoding. Results indicate that selective encoding and retrieval samples that allow detection of memory conflicts produce optimal performance, and that error rates are normally distributed with input familiarity and conflict. By using input familiarity and sample consistency to guide memory encoding, the number of encoding trials on the dataset were reduced to 18.33% of the training data while maintaining good recognition performance on the test data.

Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II

To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.

An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method

To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.

Topic Modeling Using Latent Dirichlet Allocation and Latent Semantic Indexing on South African Telco Twitter Data

Twitter is one of the most popular social media platforms where users share their opinions on different subjects. Twitter can be considered a great source for mining text due to the high volumes of data generated through the platform daily. Many industries such as telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model in this experiment. A higher topic coherence score indicates better performance of the model.

A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Design of a Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring

Harsh environments require developed detection by an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBGs) are emerging sensing instruments that respond to variations in strain and temperature by varying wavelengths. In this study, a cascaded uniform FBG is designed as a strain sensor for 6 km length at 1550 nm wavelength with 30 °C temperature by analyzing dynamic strain and wavelength shifts. The FBG is placed in a small segment of an optical fiber that reflects light with a specific wavelength and passes on the remaining wavelengths. Consequently, periodic alteration occurs in the refractive index in the fiber core. The alteration in the modal index of the fiber is produced by strain effects on a Bragg wavelength. When the developed sensor is exposed to the strain (0.01) of the cascaded uniform FBG, the wavelength shifts by 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show the reliability and effectiveness of the strain monitoring sensor for remote sensing application.

Zinc Oxide Nanoparticles Modified with Galactose as Potential Drug Carrier with Reduced Releasing of Zinc Ions

The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. Releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.

Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

This paper is motivated by the importance of multi-sensor image fusion with specific focus on Infrared (IR) and Visible image (VI) fusion for various applications including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like Visible camera & IR Thermal Imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (IR) that may be reflected or self-emitted. A digital color camera captures the visible source image and a thermal IR camera acquires the thermal source image. In this paper, some image fusion algorithms based upon Multi-Scale Transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, but they also make it hard to become deployed in system and applications that require real-time operation, high flexibility and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.

Controlled Vocabularies and Information Retrieval: 1918 Pandemic’s Scientific Literature as an Example

The role of controlled vocabularies in information retrieval is broadly recognized as a relevant feature. Besides, there is a standing demand that editors and databases should consider the effective introduction of controlled vocabularies in their procedures to index scientific literature. That is especially important because information retrieval is pointed out as a significant point to drive systematic literature review. Hence, a first question emerges: Are the controlled vocabularies at this moment considered? On the other hand, subject searching in the catalogs is complex mainly due to the dichotomy between keywords from authors versus keywords based on controlled vocabularies. Finally, there is some demand to unify the terminology related to health to make easier the medical history exploitation and research. Considering these features, this paper focuses on controlled vocabularies related to the health field and their role for storing, classifying, and retrieving relevant literature. The objective is knowing which role plays the controlled vocabularies related to the health field to index and retrieve research literature in data bases such as Web of Science (WoS) and Scopus. So, this exploratory research is grounded over two research questions: 1) Which are the terms considered in specific controlled vocabularies of the health field; and 2) How papers are indexed in relevant databases to be easily retrieved, considering keywords vs specific health’ controlled vocabularies? This research takes as fieldwork the controlled vocabularies related to health and the scientific interest for 1918 flu pandemic, also known equivocally as ‘Spanish flu’. This interest has been fostered by the emergence in the early 21st of epidemics of pneumonic diseases caused by virus. Searches about and with controlled vocabularies on WoS and Scopus databases are conducted. First results of this work in progress are surprising. There are different controlled vocabularies for the health field, into which the terms collected and preferred related to ‘1918 pandemic’ are identified. To summarize, ‘Spanish influenza epidemic’ or ‘Spanish flu’ are collected as not preferred terms. The preferred terms are: ‘influenza’ or ‘influenza pandemic, 1918-1919’. Although the controlled vocabularies are clear in their election, most of the literature about ‘1918 pandemic’ is retrievable either by ‘Spanish’ or by ‘1918’ disjunct, and the dominant word to retrieve literature is ‘Spanish’ rather than ‘1918’. This is surprising considering the existence of suitable controlled vocabularies related to health topics, and the modern guidelines of World Health Organization concerning naming of diseases that point out to other preferred terms. A first conclusion is the failure of using controlled vocabularies for a field such as health, and in consequence for WoS and Scopus. This research opens further research questions about which is the role that controlled vocabularies play in the instructions to authors that journals deliver to documents’ authors.

The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence (AI) is invaluable in identifying crime. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISAs). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The proposed framework development is implemented using the Java Agent Development Framework, Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISAs and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5% of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

A Multi-Population Differential Evolution with Adaptive Mutation and Local Search for Global Optimization

This paper presents a multi population Differential Evolution (DE) with adaptive mutation and local search for global optimization, named AMMADE in order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better result than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Unattended Crowdsensing Method to Monitor the Quality Condition of Dirt Roads

In developing countries, most roads in rural areas are dirt road. They require frequent maintenance since they are affected by erosive events, such as rain or wind, and the transit of heavy-weight trucks and machinery. Early detection of damages on the road condition is a key aspect, since it allows to reduce the maintenance time and cost, and also the limitations for other vehicles to travel through. Most proposals that help address this problem require the explicit participation of drivers, a permanent internet connection, or important instrumentation in vehicles or roads. These constraints limit the suitability of these proposals when applied into developing regions, like Latin America. This paper proposes an alternative method, based on unattended crowdsensing, to determine the quality of dirt roads in rural areas. This method involves the use of a mobile application that complements the road condition surveys carried out by organizations in charge of the road network maintenance, giving them early warnings about road areas that could be requiring maintenance. Drivers can also take advantage of the early warnings while they move through these roads. The method was evaluated using information from a public dataset. Although they are preliminary, the results indicate the proposal is potentially suitable to provide awareness about dirt roads condition to drivers, transportation authority and road maintenance companies.

A Web-Based Mobile System for Promoting Agribusiness in Northern Nigeria

This research aimed at developing a web-based mobile system and figuring out a better understanding of how could “web-based mobile system supports farmers in Kebbi State”. Thus, by finding out the answers to the research questions, a conceptual framework of the entire system was implemented using Unified Modelling Language (UML). The work involved a review of existing research on web-based mobile technology for farmers in some countries and other geographical areas within Nigeria. This research explored how farmers in Northern Nigeria, especially in Kebbi state, make use of the web-based mobile system for agribusiness. Also, the benefits of using web-based mobile systems and the challenges farmers face using such systems were examined. Considering the dynamic nature of theory of information and communication technology; this research employed survey and focus group discussion (FGD) methods. Stratified, random, purposive, and convenience sampling techniques were adopted to select the sample. A questionnaire and FGD guide were used to collect data. The survey finds that most of the Kebbi state farms use their alternative medium to get relevant information for their agribusiness. Also, the research reveals that using a web-based mobile system can benefit farmers significantly. Finally, the study has successfully developed and implemented the proposed system using mobile technology in addition to the framework design.

A VR Cybersecurity Training Knowledge-Based Ontology

Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may provide a training format that is engaging, interactive, and entertaining. A methodological approach and framework are needed to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts to develop VR training to create a relevant methodology for creating VR cybersecurity training modules.

Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning

The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-based Virtual Machine (KVM), LinuX Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.

Ultimately Bounded Takagi-Sugeno Fuzzy Management in Urban Traffic Stream Mechanism: Multi-Agent Modeling Approach

In this paper, control methodology based on the selection of the type of traffic light and the period of the green phase to accomplish an optimum balance at intersections is proposed. This balance should be flexible to the static behavior of time, and randomness in a traffic situation; the goal of the proposed method is to reduce traffic volume in transportation, the average delay for each vehicle, and control over the crash of cars. The proposed method was specifically investigated at the intersection through an appropriate timing of traffic lights by sampling a multi-agent system. It consists of a large number of intersections, each of which is considered as an independent agent that exchanges information with each other, and the stability of each agent is provided separately. The robustness against uncertainties, scalability, and stability of the closed-loop overall system are the main merits of the proposed methodology. The simulation results show that the fuzzy intelligent controller in this multi-factor system which is a Takagi-Sugeno (TS) fuzzy is more useful than scheduling in the fixed-time method and it reduces the lengths of vehicles queuing.

WormHex: A Volatile Memory Analysis Tool for Retrieval of Social Media Evidence

Social media applications are increasingly being used in our everyday communications. These applications utilise end-to-end encryption mechanisms which make them suitable tools for criminals to exchange messages. These messages are preserved in the volatile memory until the device is restarted. Therefore, volatile forensics has become an important branch of digital forensics. In this study, the WormHex tool was developed to inspect the memory dump files for Windows and Mac based workstations. The tool supports digital investigators by enabling them to extract valuable data written in Arabic and English through web-based WhatsApp and Twitter applications. The results confirm that social media applications write their data into the memory, regardless of the operating system running the application, with there being no major differences between Windows and Mac.