Abstract: In this research, the Balkan peninsula countries' developmental integration into European Union represents the strategic economic development objectives of the countries in the region. In order to objectively analyze the level of economic development competition of Balkan Peninsula countries, the mathematical compromise programming technique of multicriteria evaluation is used in this ranking problem. The primary aim of this research is to explain the role and significance of the multicriteria method evaluation using a real example of compromise solutions. Using the mathematical compromise programming technique, twelve countries of the Balkan Peninsula are economically evaluated and mutually compared. The economic development evaluation of the countries is performed according to five evaluation criteria forming the basis for economic development evaluation. The multiattribute model is solved using the mathematical compromise programming technique for producing different Pareto solutions. The results obtained by the multicriteria evaluation gives the possibility of identification and evaluation of the most eminent economic development indicators for each country separately. Finally, in this way, the proposed method has proved to be a successful model for the evaluation of the Balkan peninsula countries' economic development competition.
Abstract: This paper presents the open science philosophy and paradigm of scientific research on how to transform classical research and innovation approaches. Open science is the practice of providing free and unrestricted online access to the products of scholarly research. Open science advocates for the immediate and unrestricted online access to published, peer-reviewed research in digital format. Open science research is made available for free in perpetuity and includes guidelines and/or licenses that communicate how researchers and readers can share and re-use the digital content. The emergence of open science has changed the scholarly research and publishing landscape, making research more broadly accessible to academic and non-academic audiences alike. Consequently, open science philosophy and its practice are discussed to cover all aspects of cyberscience in the context of research and innovation excellence for the benefit of global society.
Abstract: Multidimensional compromise programming evaluation of digital commerce websites is essential not only to have recommendations for improvement, but also to make comparisons with global business competitors. This research provides a multidimensional decision making model that prioritizes the objective criteria weights of various commerce websites using multidimensional compromise solution. Evaluation of digital commerce website quality can be considered as a complex information system structure including qualitative and quantitative factors for a multicriteria decision making problem. The proposed multicriteria decision making approach mainly consists of three sequential steps for the selection problem. In the first step, three major different evaluation criteria are characterized for website ranking problem. In the second step, identified critical criteria are weighted using the standard deviation procedure. In the third step, the multidimensional compromise programming is applied to rank the digital commerce websites.
Abstract: In this research, a multidimensional compromise optimization method is proposed for multidimensional decision making analysis in the development ranking of the Gulf Cooperation Council Countries and Turkey. The proposed approach presents ranking solutions resulting from different multicriteria decision analyses, which yield different ranking orders for the same ranking problem, consisting of a set of alternatives in terms of numerous competing criteria when they are applied with the same numerical data. The multiobjective optimization decision making problem is considered in three sequential steps. In the first step, five different criteria related to the development ranking are gathered from the research field. In the second step, identified evaluation criteria are, objectively, weighted using standard deviation procedure. In the third step, a country selection problem is illustrated with a numerical example as an application of the proposed multidimensional compromise optimization model. Finally, multidimensional compromise optimization approach is applied to rank the Gulf Cooperation Council Countries and Turkey.
Abstract: In this study, a model, together with a software tool that implements it, has been developed to determine the performance ratings of employees in an organization operating in the information technology sector using the indicators obtained from employees' online study data. Weighted Sum (WS) Method and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method based on multidimensional decision making approach were used in the study. WS and TOPSIS methods provide multidimensional decision making (MDDM) methods that allow all dimensions to be evaluated together considering specific weights, allowing employees to objectively evaluate the problem of online performance tracking. The application of WS and TOPSIS mathematical methods, which can combine alternatives with a large number of dimensions and reach simultaneous solution, has been implemented through an online performance tracking software. In the application of WS and TOPSIS methods, objective dimension weights were calculated by using entropy information (EI) and standard deviation (SD) methods from the data obtained by employees' online performance tracking method, decision matrix was formed by using performance scores for each employee, and a single performance score was calculated for each employee. Based on the calculated performance score, employees were given a performance evaluation decision. The results of Pareto set evidence and comparative mathematical analysis validate that employees' performance preference rankings in WS and TOPSIS methods are closely related. This suggests the compatibility, applicability, and validity of the proposed method to the MDDM problems in which a large number of alternative and dimension types are taken into account. With this study, an objective, realistic, feasible and understandable mathematical method, together with a software tool that implements it has been demonstrated. This is considered to be preferable because of the subjectivity, limitations and high cost of the methods traditionally used in the measurement and performance appraisal in the information technology sector.
Abstract: A mathematical model and a numerical method for computing the temperature field of the profile part of convectionally cooled blades are developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli. The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations. The reliability of the developed methods is confirmed by calculation and experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of the gas turbine.
Abstract: A mathematical model and an effective numerical method for calculating the temperature field of the profile part of convection cooled blades have been developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli.The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations.The reliability of the developed methods is confirmed by the calculation-experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of a gas turbine.
Abstract: A new mathematical model for calculating the temperature field of the profile part of the cooled blades of gas turbines is developed. The theoretical substantiation of the method is based on the application of the method of potential theory (the method of boundary integral equations). The effectiveness of the implementation of the developed mathematical model is confirmed on the basis of a computational experiment.
Abstract: We study the problem of synthesis of lumped sources
control for the objects with distributed parameters on the basis of
continuous observation of phase state at given points of object. In the
proposed approach the phase state space (phase space) is beforehand
somehow partitioned at observable points into given subsets (zones).
The synthesizing control actions therewith are taken from the class of
piecewise constant functions. The current values of control actions
are determined by the subset of phase space that contains the
aggregate of current states of object at the observable points (in these
states control actions take constant values). In the paper such
synthesized control actions are called zone control actions. A
technique to obtain optimal values of zone control actions with the
use of smooth optimization methods is given. With this aim, the
formulas of objective functional gradient in the space of zone control
actions are obtained.
Abstract: In contrast to existing methods which do not take into account
multiconnectivity in a broad sense of this term, we develop
mathematical models and highly effective combination (BIEM
and FDM) numerical methods of calculation of stationary and
quasi-stationary temperature field of a profile part of a blade
with convective cooling (from the point of view of realization
on PC). The theoretical substantiation of these methods is
proved by appropriate theorems. For it, converging quadrature
processes have been developed and the estimations of errors in
the terms of A.Ziqmound continuity modules have been
received. For visualization of profiles are used: the method of the least
squares with automatic conjecture, device spline, smooth
replenishment and neural nets. Boundary conditions of heat
exchange are determined from the solution of the
corresponding integral equations and empirical relationships.
The reliability of designed methods is proved by calculation
and experimental investigations heat and hydraulic
characteristics of the gas turbine first stage nozzle blade.
Abstract: Statement of the automatic speech recognition
problem, the assignment of speech recognition and the application
fields are shown in the paper. At the same time as Azerbaijan speech,
the establishment principles of speech recognition system and the
problems arising in the system are investigated. The computing algorithms of speech features, being the main part
of speech recognition system, are analyzed. From this point of view,
the determination algorithms of Mel Frequency Cepstral Coefficients
(MFCC) and Linear Predictive Coding (LPC) coefficients expressing
the basic speech features are developed. Combined use of cepstrals of
MFCC and LPC in speech recognition system is suggested to
improve the reliability of speech recognition system. To this end, the
recognition system is divided into MFCC and LPC-based recognition
subsystems. The training and recognition processes are realized in
both subsystems separately, and recognition system gets the decision
being the same results of each subsystems. This results in decrease of
error rate during recognition. The training and recognition processes are realized by artificial
neural networks in the automatic speech recognition system. The
neural networks are trained by the conjugate gradient method. In the
paper the problems observed by the number of speech features at
training the neural networks of MFCC and LPC-based speech
recognition subsystems are investigated. The variety of results of neural networks trained from different
initial points in training process is analyzed. Methodology of
combined use of neural networks trained from different initial points
in speech recognition system is suggested to improve the reliability
of recognition system and increase the recognition quality, and
obtained practical results are shown.
Abstract: This paper deals with the design and the
implementation of an automatic task planner for a robot, irrespective
of whether it is a stationary robot or a mobile robot. The aim of the
task planner nothing but, they are planning systems which are used to
plan a particular task and do the robotic manipulation. This planning
system is embedded into the system software in the computer, which
is interfaced to the computer. When the instructions are given using
the computer, this is transformed into real time application using the
robot. All the AI based algorithms are written and saved in the
control software, which acts as the intelligent task planning system.
Abstract: Power system stabilizers (PSS) are now routinely used
in the industry to damp out power system oscillations. In this paper,
particle swarm optimization (PSO) technique is applied to
coordinately design multiple power system stabilizers (PSS) in a
multi-machine power system. The design problem of the proposed
controllers is formulated as an optimization problem and PSO is
employed to search for optimal controller parameters. By minimizing
the time-domain based objective function, in which the deviation in
the oscillatory rotor speed of the generator is involved; stability
performance of the system is improved. The non-linear simulation
results are presented for various severe disturbances and small
disturbance at different locations as well as for various fault clearing
sequences to show the effectiveness and robustness of the proposed
controller and their ability to provide efficient damping of low
frequency oscillations.
Abstract: This paper presents a comparative study of various
controllers for the speed control of DC motor. The most commonly
used controller for the speed control of dc motor is Proportional-
Integral (P-I) controller. However, the P-I controller has some
disadvantages such as: the high starting overshoot, sensitivity to
controller gains and sluggish response due to sudden disturbance. So,
the relatively new Integral-Proportional (I-P) controller is proposed to
overcome the disadvantages of the P-I controller. Further, two Fuzzy
logic based controllers namely; Fuzzy control and Neuro-fuzzy
control are proposed and the performance these controllers are
compared with both P-I and I-P controllers. Simulation results are
presented and analyzed for all the controllers. It is observed that
fuzzy logic based controllers give better responses than the traditional
P-I as well as I-P controller for the speed control of dc motor drives.
Abstract: We model the process of a data center as a multi- objective problem of mapping independent tasks onto a set of data center machines that simultaneously minimizes the energy consump¬tion and response time (makespan) subject to the constraints of deadlines and architectural requirements. A simple technique based on multi-objective goal programming is proposed that guarantees Pareto optimal solution with excellence in convergence process. The proposed technique also is compared with other traditional approach. The simulation results show that the proposed technique achieves superior performance compared to the min-min heuristics, and com¬petitive performance relative to the optimal solution implemented in UNDO for small-scale problems.
Abstract: Fine-grained data replication over the Internet allows duplication of frequently accessed data objects, as opposed to entire sites, to certain locations so as to improve the performance of largescale content distribution systems. In a distributed system, agents representing their sites try to maximize their own benefit since they are driven by different goals such as to minimize their communication costs, latency, etc. In this paper, we will use game theoretical techniques and in particular auctions to identify a bidding mechanism that encapsulates the selfishness of the agents, while having a controlling hand over them. In essence, the proposed game theory based mechanism is the study of what happens when independent agents act selfishly and how to control them to maximize the overall performance. A bidding mechanism asks how one can design systems so that agents- selfish behavior results in the desired system-wide goals. Experimental results reveal that this mechanism provides excellent solution quality, while maintaining fast execution time. The comparisons are recorded against some well known techniques such as greedy, branch and bound, game theoretical auctions and genetic algorithms.
Abstract: We investigate sonic cues for binaural sound localization within classrooms and present a structural model for the same. Two of the primary cues for localization, interaural time difference (ITD) and interaural level difference (ILD) created between the two ears by sounds from a particular point in space, are used. Although these cues do not lend any information about the elevation of a sound source, the torso, head, and outer ear carry out elevation dependent spectral filtering of sounds before they reach the inner ear. This effect is commonly captured in head related transfer function (HRTF) which aids in resolving the ambiguity from the ITDs and ILDs alone and helps localize sounds in free space. The proposed structural model of HRTF produces well controlled horizontal as well as vertical effects. The implemented HRTF is a signal processing model which tries to mimic the physical effects of the sounds interacting with different parts of the body. The effectiveness of the method is tested by synthesizing spatial audio, in MATLAB, for use in listening tests with human subjects and is found to yield satisfactory results in comparison with existing models.
Abstract: In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.
Abstract: Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.
Abstract: Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.