2-D Realization of WiMAX Channel Interleaver for Efficient Hardware Implementation

The direct implementation of interleaver functions in WiMAX is not hardware efficient due to presence of complex functions. Also the conventional method i.e. using memories for storing the permutation tables is silicon consuming. This work presents a 2-D transformation for WiMAX channel interleaver functions which reduces the overall hardware complexity to compute the interleaver addresses on the fly. A fully reconfigurable architecture for address generation in WiMAX channel interleaver is presented, which consume 1.1 k-gates in total. It can be configured for any block size and any modulation scheme in WiMAX. The presented architecture can run at a frequency of 200 MHz, thus fully supporting high bandwidth requirements for WiMAX.

The Effect of Tmax in Energy Consumption in 0IEEE 802.16e with Traffic Load

Energy consumption is an important design issue for Mobile Subscriber Station (MSS) in the standard IEEE 802.16e. Because mobility of MSS implies that energy saving becomes an issue so that lifetime of MSS can be extended before re-charging. Also, the mechanism in efficiently managing the limited energy is becoming very significant since a MSS is generally energized by battery. For these, sleep mode operation is recently specified in the MAC (Medium Access Control) protocol. In order to reduce the energy consumption, we focus on the sleep-mode and wake-mode of the MAC layer, which are included in the IEEE 802.16 standards [1- 2].