Design a single-phase BLDC Motor and Finite- Element Analysis of Stator Slots Structure Effects on the Efficiency

In this paper effect of stator slots structure and switching angle on a cylindrical single-phase brushless direct current motor (BLDC) is analyzed. BLDC motor with three different structures for stator slots is designed by using RMxprt software and efficiency of BLDC motor for different structures in full-load condition has been presented. Then the BLDC motor in different conditions by using Maxwell 3D software is designed and with finite element method is analyzed electromagnetically. At the end with the use of MATLAB software influence of switching angle on motor performance investigated and optimal angle has been determined. The results indicate that with correct choosing of stator slots structure and switching angle, maximum efficiency can be found.




References:
[1] G. O. Young, "Synthetic structure of industrial plastics (Book style with
Praveen, R.P. Ravichandran, M.H. Sadasivan Achari, V. T. Jagathy Raj,
Design and analysis of zero cogging Brushless DC motor for spacecraft
applications, Electrical Engineering/Electronics Computer Conference,
Vol. 21, pp. 254- 258, 21-22 May 2010.
[2] shak, D. Manap, N.A.A. Ahmad, M.S. Arshad, M.R., Electrically
actuated thrusters for autonomous underwater vehicle, Advanced Motion
Control, 11th IEEE International Workshop, Vol. 32, pp. 619- 624, 21-
24March2010.
[3] J ong Hyun Choi, Jung Hoon Kim, Dong Ho Kim, Design and
Parametric Analysis of Axial Flux PM Motors with Minimized Cogging
Torque, IEEE Transactions on Magnetics, Vol. 45, pp. 2855 - 2858 19
May. 2009.
[4] Guoping Peng, Research on energy conversion control for small-scaled
brushless DC wind power system, IEEE Transaction Control System,
vol. 9 n. 4, July 2004, pp. 629-636.
[5] Fengge Zhang, Nikolaus Neuberger, Eugen Nolle, Peter Gruenberger,
Fengxiang Wang, A New Type of Induction Machine with Inner and
Outer Double Rotors, IEEE International Conference on Power
Electronics and Motion Control, Vol. 1, pp. 286-289, Jan. 2004.
[6] K. T. Chau, Y. B. Li, J. Z. Jiang and S. X. Niu, Design and control of a
PM brushless hybrid generator for wind power application, IEEE
Transaction on Magnetics, Vol. 42, n. 10, pp.349−356 ,6-8 September
2006.
[7] D. Zhang, K.T. Chau, S. Niu and J.Z. Jiang, Design and analysis of a
double-stator cup-rotor PM integrated-starter-generator, IEEE
IASAnnual Meeting, pp. 20-26, Feb. 2006.
[8] Y. Zhang, K. T. Chau, J. Z. Jiang and D. Zhang, A finite element
analytical method for electromagnetic field analysis of electric machines
with free rotation, IEEE Transaction on Magnetics, Vol. 42 n. 10,
January 2006, pp. 303−309.
[9] Ghazanfar Shahgholian, Jawad Faiz, Navid Sedri, Pegah Shafaghi,
Mehdi Mahdavian, Design and Experimental Analysis of a High Speed
Two-Phase Induction Motor Drive for Weaver Machines Applications,
International Review of Electrical Engineering (IREE), Vol. 5 N. 2,
April 2010, pp. 106-112.
[10] Jang, S.-M., H.-W. Cho, and S.-K. Choi," Design and analysis of at high
speed brushless DC motor for centrifugal compressor," IEEE
Transactions on Magnetics, Vol. 43, No. 6, 2573-2575, June 2007.
[11] Rabinovici, R., Magnetic field analysis of permanent magnet motors,"
IEEE Transactions on Magnetic, Vol. 32, No. 1, 265-269, January 1996.
[12] Qiu, Z.-J., J.-D. Xu, G. Wei, and X.-Y. Hou, "An improved time domain
finite element-boundary integral scheme forelectromagnetic scattering
from 3-D objects," Progress InElectromagnetics Research, PIER 75,
119-135, 2007.
[13] C. Depollier,"The three exact components of the magnetic field
createdby a radially magnetized tile permanent magnet," Progress In
Electromagnetics Research, PIER 88, 307-319, 2008.
[14] K. Atallah and D. Howe, "A novel high performance magnetic gear,"
IEEE Trans. on Magnetics, Vol. 37, No. 4, pp. 2844−2846, 2001.
[15] R. Datta and V.T. Ranganathan, "A method of tracking the peak power
points for a variable speed wind energy conversion system," IEEE
Trans. on Energy Conversion, Vol. 18, No. 1, pp. 163−168, 2003.
[16] Z. Q. Zhu and D. Howe," Influence of design parameters on cogging
torque in permanent magnet machines, "IEEE Trans. on Energy
Conversion, Vol. 15, No. 4, pp. 407−412, 2000.
[17] Tae Heoung Kim, Jae-Hak Choi, Kwang Cheol Ko, and Ju Lee,"Finite-
Element Analysis of Brushless DC Motor Considering Freewheeling
Diodes and DC Link Voltage Ripple, "IEEE Trans. On Magnetics, Vol.
39, No. 5, pp.3001−3003, 2003.
[18] Wang Fengxiang; Wang Jiqiang, Kong Zhiguo, Zhang Fengge," Radial
and Axial Force Calculation of BLDC Motor with Passive Magnetic
Bearing, Proceedings of ICIEA 2007 pp.618-621. 23-25 May 2007.
[19] Fengge Zhang, Guangwei Liu, Yongshan Shen, "Characteristic Study on
a Novel PMSM with Opposite-rotation Dual Rotors," Proceeding of
International Conference on Electrical Machines and Systems, vol. 50,
no. 5, pp. 920-935 8-11 Oct. 2007.
[20] M. Jafarboland, A. A. Nekoubin, Design and Optimization of a Double-
Sided Linear Induction Based on Finite Element Method, International
Review of Electrical Engineering (IREE), Vol. 5 n. 3, June 2010, pp.
116-124.