Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Study of the Sorption of Biosurfactants from l. Pentosus on Sediments

Losses of surfactant due to sorption need to be considered when selecting surfactant doses for soil bioremediation. The degree of surfactant sorption onto soil depends primarily on the organic carbon fraction of soil and the chemical nature of the surfactant. The use of biosurfactants in the control of the bioavailability of toxicants in soils is an attractive option because of their biodegradability. In this work biosurfactants were produced from a cheap raw material, trimming vine shoots, employing Lactobacillus pentosus. When biosurfactants from L. pentosus was added to sediments the surface tensión of the water containing the sediments rapidly increase, the same behaviour was observed with the chemical surfactant Tween 20; whereas sodyum dodecyl sulphate (SDS) kept the surface tension of the water around 36 mN/m. It means, that the behaviour of biosurfactants from L. pentosus is more similar to non-ionic surfactatns than to anionic surfactants.

Thermodynamic Analysis of a Novel Thermal Driven Refrigeration System

Thermal-driven refrigeration systems have attracted increasing research and development interest in recent years. These systems do not cause ozone depletion and can reduce demand on electricity. The main objective of this work is to perform theoretical analyses of a thermal-driven refrigeration system using a new sorbent-sorptive pair as the working pair. The active component of sorbent is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. Based on the thermodynamic properties of the working solution, a mathematical model is introduced to analyze the system characteristics and performance. The results are used to compare with other thermal-driven refrigeration systems. It is shown that the advantages provided by this system over other absorption units include lower generator and evaporator temperatures, a higher coefficient of performance (COP). The COP is about 10 percent higher than the ones for the NH3-H2O system working at the same conditions.

Combined Microwaves and Microreactors Plant

A pilot plant for continuous flow microwave-assisted chemical reaction combined with microreactors was developed and water heating tests were conducted for evaluation of the developed plant. We developed a microwave apparatus having a single microwave generator that can heat reaction solutions in four reaction fields simultaneously in order to increase throughput. We also designed a four-branch waveguide using electromagnetic simulation, and found that the transmission efficiency at 99%. Finally, we developed the pilot plant using the developed microwave apparatus and conducted water heating tests. The temperatures in the respective reaction fields were controlled within ±1.1 K at 353.2 K. Moreover, the energy absorption rates by the water were about 90% in the respective reaction fields, whereas the energy absorption rate was about 40% when 100 cm3 of water was heated by a commercially available multimode microwave chemical reactor.

Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis

The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.

Dependence of Equilibrium, Kinetics and Thermodynamics of Zn (II) Ions Sorption from Water on Particle Size of Natural Hydroxyapatite Extracted from Bone Ash

Heavy metals have bad effects on environment and soils and it can uptake by natural HAP .natural Hap is an inexpensive material that uptake large amounts of various heavy metals like Zn (II) .Natural HAP (N-HAP), extracted from bovine cortical bone ash, is a good choice for substitution of commercial HAP. Several experiments were done to investigate the sorption capacity of Zn (II) to N-HAP in various particles sizes, temperatures, initial concentrations, pH and reaction times. In this study, the sorption of Zinc ions from a Zn solution onto HAP particles with sizes of 1537.6 nm and 47.6 nm at three initial pH values of 4.50, 6.00 and 7.50 was studied. The results showed that better performance was obtained through a 47.6 nm particle size and higher pH values. The experimental data were analyzed using Langmuir, Freundlich, and Arrhenius equations for equilibrium, kinetic and thermodynamic studies. The analysis showed a maximum adsorption capacity of NHAP as being 1.562 mmol/g at a pH of 7.5 and small particle size. Kinetically, the prepared N-HAP is a feasible sorbent that retains Zn (II) ions through a favorable and spontaneous sorption process.

Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. Sisal fibre has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18 and 24% by weight of sisal fibres were assessed. Sisal fibre reinforced cement composite slabs with long sisal fibres were manufactured using a cast hand lay up technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively. 

Prediction of Soil Exchangeable Sodium Ratio Based on Soil Sodium Adsorption Ratio

Researchers have long had trouble in measurement of Exchangeable Sodium Ratio (ESR) at salt-affected soils. this parameter are often determined using laborious and time consuming laboratory tests, but it may be more appropriate and economical to develop a method which uses a more simple soil salinity index. The aim of this study was to determine the relationship between exchangeable sodium ratio (ESR) and sodium adsorption ratio (SAR) in some salt-affected soils of Khuzestan plain. To this purpose, two experimental areas (S1, S2) of Khuzestan province-IRAN were selected and four treatments with three replications by series of double rings were applied. The treatments were included 25cm, 50cm, 75cm and 100cm water application. The statistical results of the study indicated that in order to predict soil ESR based on soil SAR the linear regression model ESR=0.2048+0.0066 SAR (R2=0.53) & ESR=0.0564+0.0171 SAR (R2=0.76) can be recommended in Pilot S1 and S2 respectively.

Processing and Assessment of Quality Characteristics of Composite Baby Foods

The usefulness of weaning foods to meet the nutrient needs of children is well recognized, and most of them are precooked roller dried mixtures of cereal and/or legume flours which posses a high viscosity and bulk when reconstituted. The objective of this study was to formulate composite weaning foods using cereals, malted legumes and vegetable powders and analyze them for nutrients, functional properties and sensory attributes. Selected legumes (green gram and lentil) were germinated, dried and dehulled. Roasted wheat, rice, carrot powder and skim milk powder also were used. All the ingredients were mixed in different proportions to get four formulations, made into 30% slurry and dried in roller drier. The products were analyzed for proximate principles, mineral content, functional and sensory qualities. The results of analysis showed following range of constituents per 100g of formulations on dry weight basis, protein, 18.1-18.9 g ; fat, 0.78-1.36 g ; iron, 5.09-6.53 mg; calcium, 265-310 mg. The lowest water absorption capacity was in case of wheat green gram based and the highest was in rice lentil based sample. Overall sensory qualities of all foods were graded as “good" and “very good" with no significant differences. The results confirm that formulated weaning foods were nutritionally superior, functionally appropriate and organoleptically acceptable.

The Photo-Absorption and Surface Feature of Nano-Structured TIO2 Coatings

Titanium dioxide coatings were deposited by utilizing atmospheric plasma spraying (APS) system. The agglomerated nanopowder and different spraying parameters were used to determine their influences on the microstructure surface feature and photoabsorption of the coatings. The microstructure of as-sprayed TiO2 coatings were characterized by scanning electron microscope (SEM). Surface characteristics were investigated by Fourier Transform Infrared (FT-IR). The photo absorption was determined by UV-VIS spectrophotometer. It is found that the spray parameters have an influence on the microstructure, surface feature and photo-absorption of the TiO2 coatings.

Evaluation of Radiation Synthesized β-Glucan Hydrogel Wound Dressing using Rat Models

In this study, hydrogels consisted of polyvinyl alcohol, propylene glycol and β-glucan were developed by radiation technique for wound dressing. The prepared hydrogels were characterized by examining of physical properties such as gel fraction and absorption ratio. The gel fraction and absorption ratio were dependent on the crosslinking density. On observing the wound healing of rat skin, the resulting hydrogels accelerated the wound healing comparing to cotton gauze. Therefore, the PVA/propylene glycol/β-glucan blended hydrogels can greatly accelerate the healing without causing irritation.

Wet Strength Improvement of Pineapple Leaf Paper for Evaporative Cooling Pad

This research aimed to modify pineapple leaf paper (PALP) for using as wet media in the evaporation cooling system by improving wet mechanical property (tensile strength) without compromising water absorption property. Polyamideamineepichorohydrin resin (PAE) and carboxymethylcellulose (CMC) were used to strengthen the paper, and the PAE and CMC ratio of 80:20 showed the optimum wet and dry tensile index values, which were higher than those of the commercial cooling pad (CCP). Compared with CCP, PALP itself and all the PAE/CMC modified PALP possessed better water absorption. The PAE/CMC modified PALP had potential to become a new type of wet media.

Impregnation of Cupper into Kanuma Volcanic Ash Soil to Improve Mercury Sorption Capacity

The present study attempted to improve the Mercury (Hg) sorption capacity of kanuma volcanic ash soil (KVAS) by impregnating the cupper (Cu). Impregnation was executed by 1 and 5% Cu powder and sorption characterization of optimum Hg removing Cu impregnated KVAS was performed under different operational conditions, contact time, solution pH, sorbent dosage and Hg concentration using the batch operation studies. The 1% Cu impregnated KVAS pronounced optimum improvement (79%) in removing Hg from water compare to control. The present investigation determined the equilibrium state of maximum Hg adsorption at 6 h contact period. The adsorption revealed a pH dependent response and pH 3.5 showed maximum sorption capacity of Hg. Freundlich isotherm model is well fitted with the experimental data than that of Langmuir isotherm. It can be concluded that the Cu impregnation improves the Hg sorption capacity of KVAS and 1% Cu impregnated KVAS could be employed as cost-effective adsorbent media for treating Hg contaminated water.

Pressure Swing Adsorption with Cassava Adsorbent for Dehydration of Ethanol Vapor

Ethanol has become more attractive in fuel industry either as fuel itself or an additive that helps enhancing the octane number and combustibility of gasoline. This research studied a pressure swing adsorption using cassava-based adsorbent prepared from mixture of cassava starch and cassava pulp for dehydration of ethanol vapor. The apparatus used in the experiments consisted of double adsorption columns, an evaporator, and a vacuum pump. The feed solution contained 90-92 %wt of ethanol. Three process variables: adsorption temperatures (110, 120 and 130°C), adsorption pressures (1 and 2 bar gauge) and feed vapor flow rate (25, 50 and 75 % valve opening of the evaporator) were investigated. According to the experimental results, the optimal operating condition for this system was found to be at 2 bar gauge for adsorption pressure, 120°C for adsorption temperature and 25% valve opening of the evaporator. Production of 1.48 grams of ethanol with concentration higher than 99.5 wt% per gram of adsorbent was obtained. PSA with cassavabased adsorbent reported in this study could be an alternative method for production of nearly anhydrous ethanol. Dehydration of ethanol vapor achieved in this study is due to an interaction between free hydroxyl group on the glucose units of the starch and the water molecules.

Formulation and in vitro Evaluation of Ondansetron Hydrochloride Matrix Transdermal Systems Using Ethyl Cellulose/Polyvinyl Pyrrolidone Polymer Blends

Transdermal delivery of ondansetron hydrochloride (OdHCl) can prevent the problems encountered with oral ondansetron. In previously conducted studies, effect of amount of polyvinyl pyrrolidone, permeation enhancer and casting solvent on the physicochemical properties on OdHCl were investigated. It is feasible to develop ondansetron transdermal patch by using ethyl cellulose and polyvinyl pyrrolidone with dibutyl pthalate as plasticizer, however, the desired flux is not achieved. The primary aim of this study is to use dimethyl succinate (DMS) and propylene glycol that are not incorporated in previous studies to determine their effect on the physicochemical properties of an OdHCl transdermal patch using ethyl cellulose and polyvinyl pyrrolidone. This study also investigates the effect of permeation enhancer (eugenol and phosphatidylcholine) on the release of OdHCl. The results showed that propylene glycol is a more suitable plasticizer compared to DMS in the fabrication of OdHCl transdermal patch using ethyl cellulose and polyvinyl pyrrolidone as polymers. Propylene glycol containing patch has optimum drug content, thickness, moisture content and water absorption, tensile strength, and a better release profile than DMS. Eugenol and phosphatidylcholine can increase release of OdHCl from the patches. From the physicochemical result and permeation profile, a combination of 350mg of ethyl cellulose, 150mg polyvinyl pyrrolidone, 3% of total polymer weight of eugenol, and 40% of total polymer weight of propylene glycol is the most suitable formulation to develop an OdHCl patch. OdHCl release did not increase with increasing the percentage of plasticiser. DMS 4, PG 4, DMS 9, PG 9, DMS 14, and PG 14 gave better release profiles where using 300mg: 0mg, 300mg: 100mg, and 350mg: 150mg of EC: PVP. Thus, 40% of PG or DMS appeared to be the optimum amount of plasticiser when the above combination where EC: PVP was used. It was concluded from the study that a patch formulation containing 350mg EC, 150mg PVP, 40% PG and 3% eugenol is the best transdermal matrix patch compositions for the uniform and continuous release/permeation of OdHCl over an extended period. This patch design can be used for further pharmacokinetic and pharmacodynamic studies in suitable animal models.

Hypoglycemic Activity of Water Soluble Polysaccharides of Yam (Dioscorea hispida Dents) Prepared by Aqueous, Papain, and Tempeh Inoculum Assisted Extractions

This research studied the hypoglycemic effect of water soluble polysaccharide (WSP) extracted from yam (Dioscorea hispida) tuber by three different methods: aqueous extraction, papain assisted extraction, and tempeh inoculums assisted extraction. The two later extraction methods were aimed to remove WSP binding protein to have more pure WSP. The hypoglycemic activities were evaluated by means in vivo test on alloxan induced hyperglycemic rats, glucose response test (GRT), in situ glucose absorption test using everted sac, and short chain fatty acids (SCFAs) analysis. All yam WSP extracts exhibited ability to decrease blood glucose level in hyperglycemia condition as well as inhibited glucose absorption and SCFA formation. The order of hypoglycemic activity was tempeh inoculums assisted- >papain assisted- >aqueous WSP extracts. GRT and in situ glucose absorption test showed that order of inhibition was papain assisted- >tempeh inoculums assisted- >aqueous WSP extracts. Digesta of caecum of yam WSP extracts oral fed rats had more SCFA than control. Tempeh inoculums assisted WSP extract exhibited the most significant hypoglycemic activity.

Optimization and Determination of Process Parameters in Thin Film SOI Photo-BJMOSFET

We propose photo-BJMOSFET (Bipolar Junction Metal-Oxide-Semiconductor Field Effect Transistor) fabricated on SOI film. ITO film is adopted in the device as gate electrode to reduce light absorption. I-V characteristics of photo-BJMOSFET obtained in dark (dark current) and under 570nm illumination (photo current) are studied furthermore to achieve high photo-to-dark-current contrast ratio. Two variables in the calculation were the channel length and the thickness of the film which were set equal to six different values, i.e., L=2, 4, 6, 8, 10, and 12μm and three different values, i.e., dsi =100, 200 and 300nm, respectively. The results indicate that the greatest photo-to-dark-current contrast ratio is achieved with L=10μm and dsi=200 nm at VGK=0.6V.

Investigation of a Wearable Textile Monopole Antenna on Specific Absorption Rate at 2.45 GHz

This paper discusses the investigation of a wearable textile monopole antenna on specific absorption rate (SAR) for bodycentric wireless communication applications at 2.45 GHz. The antenna is characterized on a realistic 8 x 8 x 8 mm3 resolution truncated Hugo body model in CST Microwave Studio software. The result exhibited that the simulated SAR values were reduced significantly by 83.5% as the position of textile monopole was varying between 0 mm and 15 mm away from the human upper arm. A power absorption reduction of 52.2% was also noticed as the distance of textile monopole increased.

Theoretical Investigation of Carbazole-Based D-D-π-A Organic Dyes for Efficient Dye-Sensitized Solar Cell

In this paper, four carbazole-based D-D-π-A organic dyes code as CCT2A, CCT3A, CCT1PA and CCT2PA were reported. A series of these organic dyes containing identical donor and acceptor group but different π-system. The effect of replacing of thiophene by phenyl thiophene as π-system on the physical properties has been focused. The structural, energetic properties and absorption spectra were theoretically investigated by means of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). The results show that nonplanar conformation due to steric hindrance in donor part (cabazolecarbazole unit) of dye molecule can prevent unfavorable dye aggregation. By means of the TD-DFT method, the absorption spectra were calculated by B3LYP and BHandHLYP to study the affect of hybrid functional on the excitation energy (Eg). The results revealed the increasing of thiophene units not only resulted in decreasing of Eg, but also found the shifting of absorption spectra to higher wavelength. TD-DFT/BHandHLYP calculated results are more strongly agreed with the experimental data than B3LYP functions. Furthermore, the adsorptions of CCT2A and CCT3A on the TiO2 anatase (101) surface were carried out by mean of the chemical periodic calculation. The result exhibit the strong adsorption energy. The calculated results provide our new organic dyes can be effectively used as dye for Dye Sensitized Solar Cell (DSC).

Interaction of Building Stones with Inorganic Water-Soluble Salts

Interaction of inorganic water-soluble salts and building stones is studied in the paper. Two types of sandstone and one type of spongillite as representatives of materials used in historical masonry are subjected to experimental testing. Within the performed experiments, measurement of moisture and chloride concentration profiles is done in order to get input data for computational inverse analysis. Using the inverse analysis, moisture diffusivity and chloride diffusion coefficient of investigated materials are accessed. Additionally, the effect of salt presence on water vapor storage is investigated using dynamic vapor sorption device. The obtained data represents valuable information for restoration of historical masonry and give evidence on the performance of studied stones in contact with water soluble salts.