The Effect of Pilates Method in Scholar’s Trunk Strength and Hamstring Flexibility: Gender Differences

Musculoskeletal injuries in school children could be reduced improving trunk strength and hamstring flexibility. Low levels of trunk muscle strength and hamstring flexibility may result in acute and musculoskeletal chronic diseases. The Pilates Method can be appropriate to improve these physical condition attributes and has been rarely employed by this social group. On the other hand, it has been shown that trunk strength and flexibility are different between genders, but there is no evidence about the effect of exercise programs designed to improve both items in school children. Therefore the objective of this study was to measure the effect of a six-week Pilates-based exercise program in 14 year old school children trunk strength and hamstring flexibility, establishing differences in gender. The sample was composed of 57 students divided into experimental group (EG; n=30) and control group (CG; n=27). Bench Trunk Curl test (BTC), Sörensen test and Toe-touch test (TT) were used to measure dynamic muscular resistance in trunk flexion, isometric strength in trunk extension and hamstring flexibility, respectively. EG utilized the Pilates exercise program during six-weeks (2 days/week, 55minutes/session). After this period of training, EG improved trunk strength and hamstring flexibility significantly but there were no significant differences within CG. Although boys were better in BTC test and girls were better in TT test, there were no significant differences between them.

Sustainable Control of Taro Beetles via Scoliid Wasps and Metarhizium anisopliae

Taro Scarab beetles (Papuana uninodis, Coleoptera: Scarabaeidae) inflict severe damage on important root crops and plants such as Taro or Cocoyam, yam, sweet potatoes, oil palm and coffee tea plants across Africa and Asia resulting in economic hardship and starvation in some nations. Scoliid wasps and Metarhizium anisopliae fungus - bio-control agents; are shown to be able to control the population of Scarab beetle adults and larvae using a newly created simulation model based on non-linear ordinary differential equations that track the populations of the beetle life cycle stages: egg, larva, pupa, adult and the population of the scoliid parasitoid wasps, which attack beetle larvae. In spite of the challenge driven by the longevity of the scarab beetles, the combined effect of the larval wasps and the fungal bio-control agent is able to control and drive down the population of both the adult and the beetle eggs below the environmental carrying capacity within an interval of 120 days, offering the long term prospect of a stable and eco-friendly environment; where the population of scarab beetles is: regulated by parasitoid wasps and beneficial soil saprophytes.

Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Study of Parameters Affecting the Electrostatic Attractions Force

This paper contains 2 main parts. In the first part of paper we simulated and studied three types of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode length and methods of improvement of adhesion force by changing these values.

Solution Economic Power Dispatch Problems by an Ant Colony Optimization Approach

The objective of the Economic Dispatch(ED) Problems of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a new method of ED problems utilizing the Max-Min Ant System Optimization. Historically, traditional optimizations techniques have been used, such as linear and non-linear programming, but within the past decade the focus has shifted on the utilization of Evolutionary Algorithms, as an example Genetic Algorithms, Simulated Annealing and recently Ant Colony Optimization (ACO). In this paper we introduce the Max-Min Ant System based version of the Ant System. This algorithm encourages local searching around the best solution found in each iteration. To show its efficiency and effectiveness, the proposed Max-Min Ant System is applied to sample ED problems composed of 4 generators. Comparison to conventional genetic algorithms is presented.

Application of GAMS and GA in the Location and Penetration of Distributed Generation

Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. DG allocation and capacity determination is a nonlinear optimization problem. The objective function of this problem is the minimization of the total loss of the distribution system. Also high levels of penetration of DG are a new challenge for traditional electric power systems. This paper presents a new methodology for the optimal placement of DG and penetration level of DG in distribution system based on General Algebraic Modeling System (GAMS) and Genetic Algorithm (GA).

Preparation and Characterization of Calcium Phosphate Cement

Calcium phosphate cement (CPC) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPC was produced by using mixture of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentration of the aqueous solutions and sodium alginate were varied to investigate the effect of different aqueous solutions and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0g/0.35ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting time and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in a basic solution but a longer setting time in an acidic solution. The stronger cement was attained from samples using the acidic solution with sodium alginate; however the strength was lower than that of using the basic solution.

Evaluation of Biomass Introduction Methods in Coal Co-Gasification

Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (cofeeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modelled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion.

Scintigraphic Image Coding of Region of Interest Based On SPIHT Algorithm Using Global Thresholding and Huffman Coding

Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.

Sustainability and Promotion of Inland Waterway Transportation Projects in Colombia: Case of the Magdalena River

Inland Waterway Transportation (IWT) is playing an important role in national transport systems, water transportation is considered to be safe, energy efficient and environmentally friendly mode of transport, all benefits of IWT cause national awareness increase, for instance the Colombian government is planning to restore the navigability of the most important river of the country, the Magdalena’s River navigability, embrace waterway transportation in Colombia could strength competitiveness while reduce most of the transport externalities. However, the current situation of the Magdalena is deplorable, the most important river of Colombia has been abandoned for decades and the solution is beyond of a single administrative entity. This paper analyzes the outcomes of the Navigation And Inland Waterway Action and Development in Europe program (NAIADES) as a prospective to develop a similar program in Colombia with similar objectives and guidelines, considering sustainability, guarantying the long-term future results and adaptability of the program. Identifying stakeholders and policy experts, a set of individual interviews were carried out; findings support the idea of lack of integration within governmental institutions and lack of importance in marketing promotion as possible drawbacks on the implementation of IWT projects.

Evaluation of Traditional Methods in Construction and Their Effects on Reinforced-Concrete Buildings Behavior

Using ETABS software, this study analyzed 23 buildings to evaluate effects of mistakes during construction phase on buildings structural behavior. For modelling, two different loadings were assumed: 1) design loading and 2) loading due to the effects of mistakes in construction phase. Research results determined that considering traditional construction methods for buildings resulted in a significant increase in dead loads and consequently intensified the displacements and base-shears of buildings under seismic loads.

Laboratory Testing Regime for Quantifying Soil Collapsibility

Collapsible soils go through radical rearrangement of their particles when triggered by water, stress or/and vibration, causing loss of volume. This loss of volume in soil as seen in foundation failures has caused millions of dollars’ worth of damages to public facilities and infrastructure and so has an adverse effect on the society and people. Despite these consequences and the several studies that are available, more research is still required in the study of soil collapsibility. Discerning the pedogenesis (formation) of soils and investigating the combined effects of the different geological soil properties is key to elucidating and quantifying soils collapsibility. This study presents a novel laboratory testing regime that would be undertaken on soil samples where the effects of soil type, compactive variables (moisture content, density, void ratio, degree of saturation) and loading are analyzed. It is anticipated that results obtained would be useful in mapping the trend of the combined effect thus the basis for evaluating soil collapsibility or collapse potentials encountered in construction with volume loss problems attributed to collapse.

Study on Mitigation Measures of Gumti Hydro Power Plant Using Analytic Hierarchy Process and Concordance Analysis Techniques

Electricity is recognized as fundamental to industrialization and improving the quality of life of the people. Harnessing the immense untapped hydropower potential in Tripura region opens avenues for growth and provides an opportunity to improve the well-being of the people of the region, while making substantial contribution to the national economy. Gumti hydro power plant generates power to mitigate the crisis of power in Tripura, India. The first unit of hydro power plant (5MW) was commissioned in June 1976 & another two units of 5 MW was commissioned simultaneously. But out of 15MW capacity at present only 8MW- 9MW power is produced from Gumti hydro power plant during rainy season. But during lean season the production reduces to 0.5MW due to shortage of water. Now, it is essential to implement some mitigation measures so that the further atrocities can be prevented and originality will be possible to restore. The decision making ability of the Analytic Hierarchy Process (AHP) and Concordance Analysis Techniques (CAT) are utilized to identify the better decision or solution to the present problem. Some related attributes are identified by the method of surveying within the experts and the available reports and literatures. Similar criteria are removed and ultimately seven relevant ones are identified. All the attributes are compared with each other and rated accordingly to their importance over the other with the help of Pair wise Comparison Matrix. In the present investigation different mitigation measures are identified and compared to find the best suitable alternative which can solve the present uncertainties involving the existence of the Gumti Hydro Power Plant.

Structural Behaviour of Concrete Energy Piles in Thermal Loadings

The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6oC to 0oC (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the singletube system.

Preliminary Survey on MATLAB Learning among Power Electronics Students in Technical Education: A Case Study

This paper discusses about the findings of preliminary survey on MATLAB software learning among power electronics students. One of the main focuses of power electronics course is on DC to DC boost convertors, because boost convertors are generally used in different industrial and non industrial applications. Population samples of this study were randomly selected final year bachelor of electronics and electrical engineering students from University Tun Hussein Onn Malaysia (UTHM).As per the results from the survey questioner analysis, almost eighty percent students are facing problem and difficulties in Dc to Dc boost convertors experimental understanding without using MATLAB simulink package. As per finding of this study it is clear that MATLAB play an effective and efficient function for better understanding of boost convertors experimental work among power electronics learners.

An Analytical Comparison between Open Loop, PID and Fuzzy Logic Based DC-DC Boost Convertor

This paper explains about the voltage output for DC to DC boost converter between open loop, PID controller and fuzzy logic controller through Matlab Simulink. Simulink input voltage was set at 12V and the voltage reference was set at 24V. The analysis on the deviation of voltage resulted that the difference between reference voltage setting and the output voltage is always lower. Comparison between open loop, PID and FLC shows that, the open loop circuit having a bit higher on the deviation of voltage. The PID circuit boosts for FLC has a lesser deviation of voltage and proved that it is such a better performance on control the deviation of voltage during the boost mode.

The Discriminate Analysis and Relevant Model for Mapping Export Potential

There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.

The Causal Relationships between Destination Image, Tourist Satisfaction and Revisit Intention: A Case of the United Arab Emirates

The connection between past travel experience and tourists’ revisit behavioral intentions has not been widely explored but the existing studies suggest a close relationship between them. Destination image can equally be construed as having effects on the attitudes of the tourists at the end of their actual visitation and the satisfaction of a tourist with his or her travel experiences contributes to a revisit intention towards a particular destination. With strong marketing efforts, UAE is not only considered to be successful in attracting foreign investors, but is becoming the most popular tourism destination in the Arab region. UAE is seriously developing its tourism image and taking serious initiatives to attract new or repeat visitations from the international tourists. This study empirically investigates the causal relationships between tourism destination image, tourist satisfaction and revisit intention using UAE as a contextual study setting. A very clear picture emerged which provides a host country with potential implications for its tourism industry practitioners, Department of Tourism and Commerce Marketing and the travel agencies who act as the intermediaries between the potential tourists and the hotel operators.

Automatic Generation of Ontology from Data Source Directed by Meta Models

Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.

Handwriting Velocity Modeling by Artificial Neural Networks

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.