The Optimal Equilibrium Capacity of Information Hiding Based on Game Theory

Game theory could be used to analyze the conflicted issues in the field of information hiding. In this paper, 2-phase game can be used to build the embedder-attacker system to analyze the limits of hiding capacity of embedding algorithms: the embedder minimizes the expected damage and the attacker maximizes it. In the system, the embedder first consumes its resource to build embedded units (EU) and insert the secret information into EU. Then the attacker distributes its resource evenly to the attacked EU. The expected equilibrium damage, which is maximum damage in value from the point of view of the attacker and minimum from the embedder against the attacker, is evaluated by the case when the attacker attacks a subset from all the EU. Furthermore, the optimal equilibrium capacity of hiding information is calculated through the optimal number of EU with the embedded secret information. Finally, illustrative examples of the optimal equilibrium capacity are presented.

Hexavalent Chromium Pollution Abatement by use of Scrap Iron

In this study, the reduction of Cr(VI) by use of scrap iron, a cheap and locally available industrial waste, was investigated in continuous system. The greater scrap iron efficiency observed for the first two sections of the column filling indicate that most of the reduction process was carried out in the bottom half of the column filling. This was ascribed to a constant decrease of Cr(VI) concentration inside the filling, as the water front passes from the bottom to the top end of the column. While the bottom section of the column filling was heavily passivated with secondary mineral phases, the top section was less affected by the passivation process; therefore the column filling would likely ensure the reduction of Cr(VI) for time periods longer than 216 hours. The experimental results indicate that fixed beds columns packed with scrap iron could be successfully used for the first step of Cr(VI) polluted wastewater treatment. However, the mass of scrap iron filling should be carefully estimated since it significantly affects the Cr(VI) reduction efficiency.

Control-flow Complexity Measurement of Processes and Weyuker's Properties

Process measurement is the task of empirically and objectively assigning numbers to the properties of business processes in such a way as to describe them. Desirable attributes to study and measure include complexity, cost, maintainability, and reliability. In our work we will focus on investigating process complexity. We define process complexity as the degree to which a business process is difficult to analyze, understand or explain. One way to analyze a process- complexity is to use a process control-flow complexity measure. In this paper, an attempt has been made to evaluate the control-flow complexity measure in terms of Weyuker-s properties. Weyuker-s properties must be satisfied by any complexity measure to qualify as a good and comprehensive one.

A Systems Modeling Approach to Support Environmentally Sustainable Business Development in Manufacturing SMEs

Small and Medium Sized Enterprises (SMEs) play an important role in many economies. In New Zealand, for example, 97% of all manufacturing companies employ less than 100 staff, and generate the predominant part of this industry sector-s economic output. Manufacturing SMEs as a group also have a significant impact on the environment. This situation is similar in many developed economies, including the European Union. Sustainable economic development therefore needs to strongly consider the role of manufacturing SMEs, who generally find it challenging to move towards more environmentally friendly business practices. This paper presents a systems thinking approach to modelling and understanding the factors which have an influence on the successful uptake of environmental practices in small and medium sized manufacturing companies. It presents a number of causal loop diagrams which have been developed based on primary action research, and a thorough understanding of the literature in this area. The systems thinking model provides the basis for further development of a strategic framework for the successful uptake of environmental innovation in manufacturing SMEs.

Optimal Algorithm for Constructing the Delaunay Triangulation in Ed

In this paper we propose a new approach to constructing the Delaunay Triangulation and the optimum algorithm for the case of multidimensional spaces (d ≥ 2). Analysing the modern state, it is possible to draw a conclusion, that the ideas for the existing effective algorithms developed for the case of d ≥ 2 are not simple to generalize on a multidimensional case, without the loss of efficiency. We offer for the solving this problem an effective algorithm that satisfies all the given requirements. But theoretical complexity of the problem it is impossible to improve as the Worst - Case Optimality for algorithms of solving such a problem is proved.

Semantic Spatial Objects Data Structure for Spatial Access Method

Modern spatial database management systems require a unique Spatial Access Method (SAM) in order solve complex spatial quires efficiently. In this case the spatial data structure takes a prominent place in the SAM. Inadequate data structure leads forming poor algorithmic choices and forging deficient understandings of algorithm behavior on the spatial database. A key step in developing a better semantic spatial object data structure is to quantify the performance effects of semantic and outlier detections that are not reflected in the previous tree structures (R-Tree and its variants). This paper explores a novel SSRO-Tree on SAM to the Topo-Semantic approach. The paper shows how to identify and handle the semantic spatial objects with outlier objects during page overflow/underflow, using gain/loss metrics. We introduce a new SSRO-Tree algorithm which facilitates the achievement of better performance in practice over algorithms that are superior in the R*-Tree and RO-Tree by considering selection queries.

Estimation of the Park-Ang Damage Index for Floating Column Building with Infill Wall

Buildings with floating column are highly undesirable built in seismically active areas. Many urban multi-storey buildings today have floating column buildings which are adopted to accommodate parking at ground floor or reception lobbies in the first storey. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path; any deviation or discontinuity in this load transfer path results in poor performance of the building. Floating column buildings are severely damaged during earthquake. Damage on this structure can be reduce by taking the effect of infill wall. This paper presents the effect of stiffness of infill wall to the damage occurred in floating column building when ground shakes. Modelling and analysis are carried out by non linear analysis programme IDARC-2D. Damage occurred in beams, columns, storey are studied by formulating modified Park & Ang model to evaluate damage indices. Overall structural damage indices in buildings due to shaking of ground are also obtained. Dynamic response parameters i.e. lateral floor displacement, storey drift, time period, base shear of buildings are obtained and results are compared with the ordinary moment resisting frame buildings. Formation of cracks, yield, plastic hinge, are also observed during analysis.

An Improved Fast Search Method Using Histogram Features for DNA Sequence Database

In this paper, we propose an efficient hierarchical DNA sequence search method to improve the search speed while the accuracy is being kept constant. For a given query DNA sequence, firstly, a fast local search method using histogram features is used as a filtering mechanism before scanning the sequences in the database. An overlapping processing is newly added to improve the robustness of the algorithm. A large number of DNA sequences with low similarity will be excluded for latter searching. The Smith-Waterman algorithm is then applied to each remainder sequences. Experimental results using GenBank sequence data show the proposed method combining histogram information and Smith-Waterman algorithm is more efficient for DNA sequence search.

Nonverbal Expression of Emotions in Conflict Escalation

The purpose of this study is to explore how the emotions at the moment of conflict escalation are expressed nonverbally and how it can be detected by the parties involved in the conflicting situation. The study consists of two parts, in the first part it starts with the definition of "conflict" and "nonverbal communication". Further it includes the analysis of emotions and types of emotions, which may bring to the conflict escalation. Four types of emotions and emotion constructs are analyzed, particularly fear, anger, guilt and frustration. The second part of the study analyses the general role of nonverbal behavior in interaction and communication, which information it may give during communication to the person, who sends or receives those signals. The study finishes with the analysis of the nonverbal expression of analyzed emotions and on how it can be used during interaction.

Computer-aided Sequence Planning of Shearing Operations in Progressive Dies

This paper aims to study the methodology of building the knowledge of planning adequate punches in order to complete the task of strip layout for shearing processes, using progressive dies. The proposed methodology uses die design rules and characteristics of different types of punches to classify them into five groups: prior use (the punches must be used first), posterior use (must be used last), compatible use (may be used together), sequential use (certain punches must precede some others) and simultaneous use (must be used together). With these five groups of punches, the searching space of feasible designs will be greatly reduced, and superimposition becomes a more effective method of punch layout. The superimposition scheme will generate many feasible solutions, an evaluation function based on number of stages, moment balancing and strip stability is developed for helping designers to find better solutions.

Information Sharing to Transformation: Antecedents of Collaborative Networked Learning in Manufacturing

Collaborative networked learning (hereafter CNL) was first proposed by Charles Findley in his work “Collaborative networked learning: online facilitation and software support" as part of instructional learning for the future of the knowledge worker. His premise was that through electronic dialogue learners and experts could interactively communicate within a contextual framework to resolve problems, and/or to improve product or process knowledge. Collaborative learning has always been the forefront of educational technology and pedagogical research, but not in the mainstream of operations management. As a result, there is a large disparity in the study of CNL, and little is known about the antecedents of network collaboration and sharing of information among diverse employees in the manufacturing environment. This paper presents a model to bridge the gap between theory and practice. The objective is that manufacturing organizations will be able to accelerate organizational learning and sharing of information through various collaborative

Detection of Actuator Faults for an Attitude Control System using Neural Network

The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.

Design of a Mould System for Horizontal Continuous Casting of Bilayer Aluminium Strips

The present article deals with a composite casting process that allows to produce bilayer AlSn6-Al strips based on the technique of horizontal continuous casting. In the first part experimental investigations on the production of a single layer AlSn6 strip are described. Afterwards essential results of basic compound casting trials using simple test specimen are presented to define the thermal conditions required for a metallurgical compound between the alloy AlSn6 and pure aluminium. Subsequently, numerical analyses are described. A finite element model was used to examine a continuous composite casting process. As a result of the simulations the main influencing parameters concerning the thermal conditions within the composite casting region could be pointed out. Finally, basic guidance is given for the design of an appropriate composite mould system.

Geochemical Assessment of Heavy Metals Concentration in Surface Sediment of West Port, Malaysia

One year (November 2009-October 2010) sediment monitoring was used to evaluate pollution status, concentration and distribution of heavy metals (As, Cu, Cd, Cr, Hg, Ni, Pb and Zn) in West Port of Malaysia. Sediment sample were collected from nine stations every four months. Geo-accumulation factor and Pollution Load Index (PLI) were estimated to better understand the pollution level in study area. The heavy metal concentration (Mg/g dry weight) were ranged from 20.2 to 162 for As, 7.4 to 27.6 for Cu, 0.244 to 3.53 for Cd, 11.5 to 61.5 for Cr, 0.11 to 0.409 for Hg, 7.2 to 22.2 for Ni, 22.3 to 80 for Pb and 23 to 98.3 for Zn. In general, concentration some metals (As,Cd, Hg and Pb) was higher than background values that are considered as serious concern for aquatic life and the human health.

Comparative Study of Indoor Environment in Residential Buildings in Hot Humid Climate of Malaysia

There-s a lack in understanding the indoor climate of Malaysian residential. The assumption of traditional house could provide the best indoor environment is too good to be true. This research is to understand indoor environment in three types of Malaysian residential and thermo recorder TR72Ui were placed in indoor spaces for measurement. There are huge differences of indoor environment between housing types, and building material helps to control indoor climate. Traditional house indoor climate was similar to the outdoor. Temperature in the bedroom of terrace and town houses were slightly higher than the living room. Indoor temperature was 2oC lower in the rainy season than the hot season. It was hard to control indoor humidity level in traditional house compared with terrace and town house. As for conclusion, town house provides the best thermal environment to the building occupants and can be improved with good roof insulation.

Promoting Collaborative Learning in Software Engineering by Adapting the PBL Strategy

Software engineering education not only embraces technical skills of software development but also necessitates communication and interaction among learners. In this paper, it is proposed to adapt the PBL methodology that is especially designed to be integrated into software engineering classroom in order to promote collaborative learning environment. This approach helps students better understand the significance of social aspects and provides a systematic framework to enhance teamwork skills. The adaptation of PBL facilitates the transition to an innovative software development environment where cooperative learning can be actualized.

Modeling of Statistically Multiplexed Non Uniform Activity VBR Video

This paper reports the feasibility of the ARMA model to describe a bursty video source transmitting over a AAL5 ATM link (VBR traffic). The traffic represents the activity of the action movie "Lethal Weapon 3" transmitted over the ATM network using the Fore System AVA-200 ATM video codec with a peak rate of 100 Mbps and a frame rate of 25. The model parameters were estimated for a single video source and independently multiplexed video sources. It was found that the model ARMA (2, 4) is well-suited for the real data in terms of average rate traffic profile, probability density function, autocorrelation function, burstiness measure, and the pole-zero distribution of the filter model.

A Study on the Design Elements of Sidewalk in Urban Commercial District

This study was to search for the desirable direction of the sidewalk planning in Korea by establishing the concepts of walking and pedestrian space, and analyzing the advanced precedents in and out of country. Also, based on the precedent studies and relevant laws, regulations, and systems, it aimed for the following sequential process: firstly, to derive design elements from the functions and characteristics of sidewalk and cluster the similar elements by each characteristics, sampling representative characteristics and making them hierarchical; then, to analyze their significances via the first questionnaire survey, and the relative weights and priorities of each elements via the Analytic Hierarchy Process(AHP); finally, based on the analysis result, to establish the frame of suggesting the direction of policy to improve the pedestrian environment of sidewalk in urban commercial district for the future planning and design of pedestrian space.

Oxygen-Interstitials and Group-V Element Doping for p-Type ZnO

In realizing devices using ZnO, a key challenge is the production of p-type material. Substitution of oxygen by a group-V impurity is thought to result in deep acceptor levels, but a candidate made up from a complex of a group-V impurity (P, As, Sb) on a Zn site coupled with two vacant Zn sites is widely viewed as a candidate. We show using density-functional simulations that in contrast to such a view, complexes involving oxygen interstitials are energetically more favorable, resulting in group-V impurities coordinated with four, five or six oxygen atoms.

Personal Knowledge Management among Adult Learners: Behind the Scene of Social Network

The burst of Web 2.0 technology and social networking tools manifest different styles of learning and managing knowledge among both knowledge workers and adult learners. In the Western countries, open-learning concept has been made popular due to the ease of use and the reach that the technology provides. In Malaysia, there are still some gaps between the learners- acceptance of technology and the full implementation of the technology in the education system. There is a need to understand how adult learners, who are knowledge workers, manage their personal knowledge via social networking tools, especially in their learning process. Four processes of personal knowledge management (PKM) and four cognitive enablers are proposed supported by analysed data on adult learners in a university. The model derived from these processes and enablers is tested and presented, with recommendations on features to be included in adult learners- learning environment.