Abstract: In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.
Abstract: The main objective of this study is to investigate basic properties of different natural clays, by two methods. The first method is a gas phase conversion of methylbutynol (MBOH). The second method is the application of Pyrrole-tpd. Based on the product distribution from the first method, the acidic, basic and coordinately unsaturated sites were differentiated. It was shown that both the conversion and the selectivity for basic products did not change with reaction time. Nevertheless, a deviation from the stoichiometric ratio R of formed acetylene to acetone was observed (R=0.8…0.97). The conversion normalized to the surface area was used for establishing the activity sequence: White kaolinite > red kaolinite > bentonite > zeolite > diatomite. In addition, the results were compared with synthetic amorphous alumosilicates and typical basic materials like MgO and ZnO. The basic properties were characterized using the Pyrrole-tpd. The Pyrrole-tpd results showed the same basicity sequence as the MBOH gas phase reaction.
Abstract: Elastic performances, as an essential property of nanowires (NWs), play a significant role in the design and fabrication of modern nanodevices. In this paper, our interest is focused on ZnO NWs to investigate wire diameter (Dwire ≤ 400 nm) effects on elastic properties. The plotted data reveal that a strong size dependence of the elastic constants exists when the wire diameter is smaller than ~ 100 nm. For larger diameters (Dwire > 100 nm), these ones approach their corresponding bulk values. To enrich this study, we make use of the scanning acoustic microscopy simulation technique. The calculation methodology consists of several steps: determination of longitudinal and transverse wave velocities, calculation of refection coefficients, calculation of acoustic signatures and Rayleigh velocity determination. Quantitatively, it was found that changes in ZnO diameters over the ranges 1 nm ≤ Dwire ≤ 100 nm lead to similar exponential variations, for all elastic parameters, of the from: A = a + b exp(-Dwire/c) where a, b, and c are characteristic constants of a given parameter. The developed relation can be used to predict elastic properties of such NW by just knowing its diameter and vice versa.
Abstract: We present a theoretical investigation on the structural,
electronic properties and vibrational mode of nitrogen impurities
in ZnO. The atomic structures, formation and transition energies
and vibrational modes of (NO3)i interstitial or NO4 substituting
on an oxygen site ZnO were computed using ab initio total energy
methods. Based on Local density functional theory, our calculations
are in agreement with one interpretation of bound-excition
photoluminescence for N-doped ZnO. First-principles calculations
show that (NO3)i defects interstitial or NO4 substituting on an
Oxygen site in ZnO are important suitable impurity for p-type doping
in ZnO. However, many experimental efforts have not resulted in
reproducible p-type material with N2 and N2O doping. by means of
first-principle pseudo-potential calculation we find that the use of NO
or NO2 with O gas might help the experimental research to resolve
the challenge of achieving p-type ZnO.
Abstract: A Silver (Ag) thin film is introduced as a template and
doping source for vertically aligned p–type ZnO nanorods. ZnO
nanorods were grown using an ammonium hydroxide based
hydrothermal process. During the hydrothermal process, the Ag thin
film was dissolved to generate Ag ions in the solution. The Ag ions can
contribute to doping in the wurzite structure of ZnO and the (111)
grain of Ag thin film can be the epitaxial temporal template for the
(0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were
successfully grown on the substrate, which can be an electrode or
semiconductor for the device application. To demonstrate the
potentials of this idea, p–n diode was fabricated and its electrical
characteristics were demonstrated.
Abstract: Rhodamine B (RB) is a toxic dye used extensively in
textile industry, which must be remediated before its drainage to
environment. In the present study, supported gold nanoparticles on
commercially available titania and zincite were successfully prepared
and then their activity on the photodegradation of RB under UV A
light irradiation were evaluated. The synthesized photocatalysts were
characterized by ICP, BET, XRD, and TEM. Kinetic results showed
that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This
observation could be attributed to the strong reflection of UV
irradiation by gold nanoparticles over TiO2 support.
Abstract: Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).
Abstract: In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.
Abstract: Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies,
which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.
Abstract: A simple approach is demonstrated for growing large
scale, nearly vertically aligned ZnO nanowire arrays by thermal
oxidation method. To reveal effect of temperature on growth and
physical properties of the ZnO nanowires, gold coated zinc substrates
were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray
diffraction patterns of annealed samples indicated a set of well
defined diffraction peaks, indexed to the wurtzite hexagonal phase of
ZnO. The scanning electron microscopy studies show formation of
ZnO nanowires having length of several microns and average of
diameter less than 500 nm. It is found that the areal density of wires
is relatively higher, when the annealing is carried out at higher
temperature i.e. at 400°C. From the field emission studies, the values
of the turn-on and threshold field, required to draw emission current
density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm
and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and
3.7 V/μm for that annealed at 400 °C, respectively. The field
emission current stability, investigated over duration of more than 2
hours at the preset value of 1 μA, is found to be fairly good in both
cases. The simplicity of the synthesis route coupled with the
promising field emission properties offer unprecedented advantage
for the use of ZnO field emitters for high current density
applications.
Abstract: In realizing devices using ZnO, a key challenge is the
production of p-type material. Substitution of oxygen by a group-V
impurity is thought to result in deep acceptor levels, but a candidate
made up from a complex of a group-V impurity (P, As, Sb) on a Zn
site coupled with two vacant Zn sites is widely viewed as a candidate.
We show using density-functional simulations that in contrast to such
a view, complexes involving oxygen interstitials are energetically
more favorable, resulting in group-V impurities coordinated with four,
five or six oxygen atoms.
Abstract: ZnO nanocrystals with mean diameter size 14 nm
have been prepared by precipitation method, and examined as
photocatalyst for the UV-induced degradation of insecticide diazinon
as deputy of organic pollutant in aqueous solution. The effects of
various parameters, such as illumination time, the amount of
photocatalyst, initial pH values and initial concentration of
insecticide on the photocatalytic degradation diazinon were
investigated to find desired conditions. In this case, the desired
parameters were also tested for the treatment of real water containing
the insecticide. Photodegradation efficiency of diazinon was
compared between commercial and prepared ZnO nanocrystals. The
results indicated that UV/ZnO process applying prepared
nanocrystalline ZnO offered electrical energy efficiency and
quantum yield better than commercial ZnO. The present study, on the
base of Langmuir-Hinshelwood mechanism, illustrated a pseudo
first-order kinetic model with rate constant of surface reaction equal
to 0.209 mg l-1 min-1 and adsorption equilibrium constant of 0.124 l
mg-1.
Abstract: Zinc borates can be used as multi-functional
synergistic additives with flame retardant additives in polymers. Zinc
borate is white, non-hygroscopic and powder type product. The most
important properties are low solubility in water and high dehydration
temperature. Zinc borates dehydrate above 290°C and anhydrous zinc
borate has thermal resistance about 400°C. Zinc borates can be
synthesized using several methods such as hydrothermal and solidstate
processes. In this study, the solid-state method was applied at
low temperatures of 600oC and 700oC using the starting materials of
ZnO and H3BO3 with several mole ratios. The reaction time was
determined as 4 hours after some preliminary experiments. After the
synthesis, the crystal structure and the morphology of the products
were examined by X-Ray Diffraction (XRD) and Fourier Transform
Infrared Spectroscopy (FT-IR). As a result the forms of ZnB4O7,
Zn3(BO3)2, ZnB2O4 were synthesized and obtained along with the
unreacted ZnO.
Abstract: TiO2 supported nano-ZnO catalyst was prepared by
deposition-precipitation and tested for the trans-esterification
reaction of soybean oil to biodiesel. The TiO2 support stabilized the
nano-ZnO in a dispersed form with limited crystallite size compared
to the unsupported ZnO. The final ZnO dispersion and crystallite size
and the material transfer resistance in the catalyst significantly
influenced the supported nano-ZnO catalyst performance.
Abstract: ZnO+Ga2O3 functionally graded thin films (FGTFs)
were examined for their potential use as Solar cell and organic light
emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO)
were fabricated by combinatorial RF magnetron sputtering. The
composition gradient was controlled up to 10% by changing the
plasma power of the two sputter guns. A Ga2O3+ZnO graded region
was placed on the top layer of ZnO. The FGTFs showed up to 80%
transmittance. Their surface resistances were reduced to < 10% by
increasing the Ga2O3: pure ZnO ratio in the TCO. The FGTFs- work
functions could be controlled within a range of 0.18 eV. The
controlled work function is a very promising technology because it
reduces the contact resistance between the anode and Hall transport
layers of OLED and solar cell devices.