First-Principles Density Functional Study of Nitrogen-Doped P-Type ZnO

We present a theoretical investigation on the structural,
electronic properties and vibrational mode of nitrogen impurities
in ZnO. The atomic structures, formation and transition energies
and vibrational modes of (NO3)i interstitial or NO4 substituting
on an oxygen site ZnO were computed using ab initio total energy
methods. Based on Local density functional theory, our calculations
are in agreement with one interpretation of bound-excition
photoluminescence for N-doped ZnO. First-principles calculations
show that (NO3)i defects interstitial or NO4 substituting on an
Oxygen site in ZnO are important suitable impurity for p-type doping
in ZnO. However, many experimental efforts have not resulted in
reproducible p-type material with N2 and N2O doping. by means of
first-principle pseudo-potential calculation we find that the use of NO
or NO2 with O gas might help the experimental research to resolve
the challenge of achieving p-type ZnO.




References:
[1] S. Limpijumnong, S. B. Zhang, S.-H.. Wei, and C. H. Park, Phys. Rev.
Lett. 92, 155504 (2004).
[2] D. M. Bagnall, Y. F. Chen, , Z. Zhu, T. Yao, S. Koyama, M. Y. Shen,
and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
[3] Z. K. Tang, G. K. L. Wong, M. Yu, P. Kawasaki, A. Ohtomo, H. Koinuma,
and Y. Segawa, Appl. Phys. Lett. 72, 464 (1998).
[4] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang,
and S. J. Park, Appl. Phys. Lett. 86, 222101 (2005).
[5] A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
[6] C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).
[7] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and
G. Cantwell, Appl. Phys. Lett. 80, 1830 (2002).
[8] J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu, and X. D. Gao, Appl. Phys.
Lett. 85, 4070 (2004).
[9] I. V. Rogozin, Thin. Solid. Films. 4, 4318 (2008).
[10] W. Wei, L. Kerr, and N. Leyarovska, Chem. Phys. Lett. 469, 318 (2009).
[11] S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
[12] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya,
S. F. Ohtani, K. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma,
and M. Kawasaki, Nature Mater. 4, 42 (2005).
[13] K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, Appl.
Phys. Lett. 83, 63 (2003).
[14] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wroble, H. M. Jeong, H. W.
White, J. Cryst. Growth 216, 330 (2000).
[15] A. Allenic, W. Guo, Y. B. Chen, G. Y. Zhao, X. Q. Pana, Y. Che, Z. D.
Hu, B. Liu, J. Mater. Res. 22, 2339 (2007)
[16] Y. R. Ryua, T. S. Lee, J. H. Leem, and H. W. White, Appl. Phys. Lett.
83, 4032 (2003).
[17] H. W. Liang, Y. M. Lu, D. Z. Shen, Y. C. Liu, J. F. Yan, C. X. Shan,
B. H. Li, Z. Z. Zhang, J. Y. Zhang, X. W. Fan, Phys. Status Solidi A
202, 1060 (2005).
[18] M. Pan, J. Nause, V. Rengarajan, R. Rondon, E. H. Park, I. T. Ferguson,
J. Electron Mater 36, 457 (2oo7).
[19] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang,
Y. D. Zheng, S. F. Choy, G. Q. Lo, X. W. Sun J. Cryst. Growth 310,
2448 (2008).
[20] A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hoffmann,
U. Haboeck, M. Strassburg, M. Dworzak, Phys. Status Solidi B 234,
r7 (2002).
[21] J. A. Aparicio, F. E. Fernandez, J. Mol. Struct. 10, 46840 (2010).
[22] T. Monteiro, A. J. Neves, M. C. Carmo, M. J. Soares, M. peres, J. Wang,
J. App. Phys. 98, 013502 (2005).
[23] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster,
F. Bertram, J. Christen, A. Hoffmann, M. Stra¨ssburg, M. Dworzak, U.
Haboeck, A. V. Rodina, Phys. Solid State B 241, 231 (2004).
[24] B. T. Adekore, J. M. Pierce, R. F. Davis, D. W. Barlage, J. F. Muth, J.
Appl. Phys. 102, 024908 (2007).
[25] N. Haneche, A. Lusson, C. Sartel, A. Marzouki, V. Sallet, M. Oueslati,
F. Jomard, P. Galtier, Phys. Status Solidi 247, 1671 (2009).
[26] J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 95,
252105 (2009).
[27] E. -C. lee, Y. -S. Kim, Y. -G. Jin, K. J. Chang, Phys. Rev. B 64, 085120
(2001).
[28] P. R. Briddon and R. Jones, Phys. Status Solidi B 217, 131 (2000).
[29] M. J. Rayson and P. R. Briddon, Computer Phys. Comm. 178, 128
(2008).
[30] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[31] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[32] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[33] J. P. Goss, M. J. Shaw, and P. R. Briddon, Topics in Appl. Phys. 104,
69 (2007).
[34] CRC handbook of chemistry and physics, 73 ed., edited by D. R. Lide
(CRC, Boca Raton, FL, 1992).
[35] S. Lany, A. Zunger, Phys. Rev. B 64, 235104 (2008).
[36] X. Li, Y. Yan, T. A. Gessert, C. DeHart, C. L. Perhins, D. Young, T. J.
Coutts, Solid State Commun. 6, 56 (2003).
[37] Y. Yan, S. B. Zhang, S. T. Pantelides, Phys. Rev. L. 86, 5723 (2001).
[38] J. F. Rommeluere, L. Svob, F. Jomard, J. Mimila-Arroyo, G. Amiri,
V. Lusson, V. Sallet, O. Gorochov, P. Galtier, Y. Marfaing, Phys. Status
Solidi 1 904 (2004).
[39] H. Oberhammer, J. Mol. Struct. 605, 1439 (2002).
[40] N. H. Nickel, F. Friedrich, J. F. Rommelure, P. Galtier, Appl. Phys. Lett.
87, 211905 (2005).
[41] L. L. Kerr, X. Li, M. Canepa, A. J. Sommer, Thin Solid Films 515,
5282 (2007).
[42] W. A. Brown, D. A. King, J. Phys. Chem. B 104, 2578 (2000).