Prediction of Bath Temperature Using Neural Networks

In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.

Isomorphism on Fuzzy Graphs

In this paper, the order, size and degree of the nodes of the isomorphic fuzzy graphs are discussed. Isomorphism between fuzzy graphs is proved to be an equivalence relation. Some properties of self complementary and self weak complementary fuzzy graphs are discussed.

Dynamic Model of a Buck Converter with a Sliding Mode Control

This paper presents the averaging model of a buck converter derived from the generalized state-space averaging method. The sliding mode control is used to regulate the output voltage of the converter and taken into account in the model. The proposed model requires the fast computational time compared with those of the full topology model. The intensive time-domain simulations via the exact topology model are used as the comparable model. The results show that a good agreement between the proposed model and the switching model is achieved in both transient and steady-state responses. The reported model is suitable for the optimal controller design by using the artificial intelligence techniques.

On Bounds For The Zeros of Univariate Polynomial

Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated.Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds for the moduli of the zeros of complex polynomials. That means, we provide disks in the complex plane where all zeros of a complex polynomial are situated. Such bounds are extremely useful for obtaining a priori assertations regarding the location of zeros of polynomials. Based on the proven bounds and a test set of polynomials, we present an experimental study to examine which bound is optimal.

Utilization of 3-N-trimethylamino-1-propanol by Rhodococcus sp. strain A4 isolated from Natural Soil

The aim of this study was to screen for microorganism that able to utilize 3-N-trimethylamino-1-propanol (homocholine) as a sole source of carbon and nitrogen. The aerobic degradation of homocholine has been found by a gram-positive Rhodococcus sp. bacterium isolated from soil. The isolate was identified as Rhodococcus sp. strain A4 based on the phenotypic features, physiologic and biochemical characteristics, and phylogenetic analysis. The cells of the isolated strain grown on both basal-TMAP and nutrient agar medium displayed elementary branching mycelia fragmented into irregular rod and coccoid elements. Comparative 16S rDNA sequencing studies indicated that the strain A4 falls into the Rhodococcus erythropolis subclade and forms a monophyletic group with the type-strains of R. opacus, and R. wratislaviensis. Metabolites analysis by capillary electrophoresis, fast atom bombardment-mass spectrometry, and gas chromatography- mass spectrometry, showed trimethylamine (TMA) as the major metabolite beside β-alanine betaine and trimethylaminopropionaldehyde. Therefore, the possible degradation pathway of trimethylamino propanol in the isolated strain is through consequence oxidation of alcohol group (-OH) to aldehyde (-CHO) and acid (-COOH), and thereafter the cleavage of β-alanine betaine C-N bonds yielded trimethylamine and alkyl chain.

Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process

It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.

The Efficacy of Danger Ideation Reduction Therapy for an 86-Year Old Man with a 63-Year History of Obsessive-Compulsive Disorder: A Case Study

While OCD is one of the most commonly occurring psychiatric conditions experienced by older adults, there is a paucity of research conducted into the treatment of older adults with OCD. This case study represents the first published investigation of a cognitive treatment for geriatric OCD. It describes the successful treatment of an 86-year old man with a 63-year history of OCD using Danger Ideation Reduction Therapy (DIRT). The client received 14 individual, 50-minute treatment sessions of DIRT over 13 weeks. Clinician-based Y-BOCS scores reduced 84% from 25 (severe) at pre-treatment, to 4 (subclinical) at 6-month post-treatment follow-up interview, demonstrating the efficacy of DIRT for this client. DIRT may have particular advantages over ERP and pharmacological approaches, however further research is required in older adults with OCD.

Development of User Interface for Path Planning System for Bus Network and On-demand Bus Reservation System

Route bus system is one of fundamental transportation device for aged people and students, and has an important role in every province. However, passengers decrease year by year, therefore the authors have developed the system called "Bus-Net" as a web application to sustain the public transport. But there are two problems in Bus-Net. One is the user interface that does not consider the variety of the device, and the other is the path planning system that dose not correspond to the on-demand bus. Then, Bus-Net was improved to be able to utilize the variety of the device, and a new function corresponding to the on-demand bus was developed.

Automatic Distance Compensation for Robust Voice-based Human-Computer Interaction

Distant-talking voice-based HCI system suffers from performance degradation due to mismatch between the acoustic speech (runtime) and the acoustic model (training). Mismatch is caused by the change in the power of the speech signal as observed at the microphones. This change is greatly influenced by the change in distance, affecting speech dynamics inside the room before reaching the microphones. Moreover, as the speech signal is reflected, its acoustical characteristic is also altered by the room properties. In general, power mismatch due to distance is a complex problem. This paper presents a novel approach in dealing with distance-induced mismatch by intelligently sensing instantaneous voice power variation and compensating model parameters. First, the distant-talking speech signal is processed through microphone array processing, and the corresponding distance information is extracted. Distance-sensitive Gaussian Mixture Models (GMMs), pre-trained to capture both speech power and room property are used to predict the optimal distance of the speech source. Consequently, pre-computed statistic priors corresponding to the optimal distance is selected to correct the statistics of the generic model which was frozen during training. Thus, model combinatorics are post-conditioned to match the power of instantaneous speech acoustics at runtime. This results to an improved likelihood in predicting the correct speech command at farther distances. We experiment using real data recorded inside two rooms. Experimental evaluation shows voice recognition performance using our method is more robust to the change in distance compared to the conventional approach. In our experiment, under the most acoustically challenging environment (i.e., Room 2: 2.5 meters), our method achieved 24.2% improvement in recognition performance against the best-performing conventional method.

Implementing a Visual Servoing System for Robot Controlling

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Experimental Studies on the Combustion and Emission Characteristics of a Diesel Engine Fuelled with Used Cooking Oil Methyl Esterand its Diesel Blends

Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analysed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution.

Haptics Enabled of ine AFM Image Analysis

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

Iran’s Gas Flare Recovery Options Using MCDM

In this paper, five options of Iran’s gas flare recovery have been compared via MCDM method. For developing the model, the weighing factor of each indicator an AHP method is used via the Expert-choice software. Several cases were considered in this analysis. They are defined where the priorities were defined always keeping one criterion in first position, while the priorities of the other criteria were defined by ordinal information defining the mutual relations of the criteria and the respective indicators. The results, show that amongst these cases, priority is obtained for CHP usage where availability indicator is highly weighted while the pipeline usage is obtained where environmental indicator highly weighted and the injection priority is obtained where economic indicator is highly weighted and also when the weighing factor of all the criteria are the same the Injection priority is obtained.

Optimal Straight Line Trajectory Generation in 3D Space using Deviation Algorithm

This paper presents an efficient method of obtaining a straight-line motion in the tool configuration space using an articulated robot between two specified points. The simulation results & the implementation results show the effectiveness of the method.

Application of Multi-Dimensional Principal Component Analysis to Medical Data

Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.

Monitoring Patents Using the Statistical Process Control

The statistical process control (SPC) is one of the most powerful tools developed to assist ineffective control of quality, involves collecting, organizing and interpreting data during production. This article aims to show how the use of CEP industries can control and continuously improve product quality through monitoring of production that can detect deviations of parameters representing the process by reducing the amount of off-specification products and thus the costs of production. This study aimed to conduct a technological forecasting in order to characterize the research being done related to the CEP. The survey was conducted in the databases Spacenet, WIPO and the National Institute of Industrial Property (INPI). Among the largest are the United States depositors and deposits via PCT, the classification section that was presented in greater abundance to F.

Analyzing and Comparing the Architectural Specifications and the Urban Role of Scientific– Technological Parks in Iran and the World

The issue of scientific – technological parks has been proposed in several countries of the world especially in western countries since a few decades ago and its efficiency is under examination. In our county Iran, some scientific – technological parks have been established or are being established. This design would evaluate the urban role and method of architecture of these parks in order to criticize its efficiency and offer some suggestions, as much as possible to improve its building methods in Iran. The main problem of this design is that how much these parks in Iran do meet the international measurements. So for this reason, one scientific park in Iran and one from western countries would be studied and compared with each other.

Simulation Modeling of Fire Station Locations under Traffic Obstacles

Facility location problem involves locating a facility to optimize some performance measures. Location of a public facility to serve the community, such as a fire station, significantly affects its service quality. Main objective in locating a fire station is to minimize the response time, which is the time duration between receiving a call and reaching the place of incident. In metropolitan areas, fire vehicles need to cross highways and other traffic obstacles through some obstacle-overcoming points which delay the response time. In this paper, fire station location problem is analyzed. Simulation models are developed for the location problems which involve obstacles. Particular case problems are analyzed and the results are presented.

A Novel Frequency Offset Estimation Scheme for OFDM Systems

In this paper, we propose a novel frequency offset estimation scheme for orthogonal frequency division multiplexing (OFDM) systems. By correlating the OFDM signals within the coherence phase bandwidth and employing a threshold in the frequency offset estimation process, the proposed scheme is not only robust to the timing offset but also has a reduced complexity compared with that of the conventional scheme. Moreover, a timing offset estimation scheme is also proposed as the next stage of the proposed frequency offset estimation. Numerical results show that the proposed scheme can estimate frequency offset with lower computational complexity and does not require additional memory while maintaining the same level of estimation performance.

Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V

The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will drop