Molecular Characterization of Free Radicals Decomposing Genes on Plant Developmental Stages

Biochemical and molecular analysis of some antioxidant enzyme genes revealed different level of gene expression on oilseed (Brassica napus). For molecular and biochemical analysis, leaf tissues were harvested from plants at eight different developmental stages, from young to senescence. The levels of total protein and chlorophyll were increased during maturity stages of plant, while these were decreased during the last stages of plant growth. Structural analysis (nucleotide and deduced amino acid sequence, and phylogenic tree) of a complementary DNA revealed a high level of similarity for a family of Catalase genes. The expression of the gene encoded by different Catalase isoforms was assessed during different plant growth phase. No significant difference between samples was observed, when Catalase activity was statistically analyzed at different developmental stages. EST analysis exhibited different transcripts levels for a number of other relevant antioxidant genes (different isoforms of SOD and glutathione). The high level of transcription of these genes at senescence stages was indicated that these genes are senescenceinduced genes.

Toxicity Study of Two Different Synthesized Silver Nanoparticles on Bacteria Vibrio Fischeri

A comparative evaluation of acute toxicity of synthesized nano silvers using two different procedures (biological and chemical reduction methods) and silver ions on bacteria Vibrio fischeri was investigated. The bacterial light inhibition test as a toxicological endpoint was used by applying of a homemade luminometer. To compare the toxicity effects as a quantitative parameter, a nominal effective concentrations (EC) of chemicals and a susceptibility constant (Z-value) of bacteria, after 5 min and 30 min exposure times, were calculated. After 5 and 30 min contact times, the EC50 values of two silver nanoparticles and the EC20 values were about similar. It demonstrates that toxicity of silvers was independent of their procedure. The EC values of nanoparticles were larger than those of the silver ions. The susceptibilities(Z- Values) of V.fischeri (L/mg) to the silver ions were greater than those of the nano silvers. According to the EC and Z values, the toxicity of silvers decreased in the following order: Silver ions >> silver nanoparticles from chemical reduction method ~ silver nanoparticles from biological method.

Material Density Mapping on Deformable 3D Models of Human Organs

Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.

Genome-Wide Analysis of BES1/BZR1 Gene Family in Five Plant Species

Brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence, and stress responses. BRs signal through the BES1/BZR1 family of transcription factors, which regulate hundreds of target genes involved in this pathway. In this research a comprehensive genome-wide analysis was carried out in BES1/BZR1 gene family in Arabidopsis thaliana, Cucumis sativus, Vitis vinifera, Glycin max and Brachypodium distachyon. Specifications of the desired sequences, dot plot and hydropathy plot were analyzed in the protein and genome sequences of five plant species. The maximum amino acid length was attributed to protein sequence Brdic3g with 374aa and the minimum amino acid length was attributed to protein sequence Gm7g with 163aa. The maximum Instability index was attributed to protein sequence AT1G19350 equal with 79.99 and the minimum Instability index was attributed to protein sequence Gm5g equal with 33.22. Aliphatic index of these protein sequences ranged from 47.82 to 78.79 in Arabidopsis thaliana, 49.91 to 57.50 in Vitis vinifera, 55.09 to 82.43 in Glycin max, 54.09 to 54.28 in Brachypodium distachyon 55.36 to 56.83 in Cucumis sativus. Overall, data obtained from our investigation contributes a better understanding of the complexity of the BES1/BZR1 gene family and provides the first step towards directing future experimental designs to perform systematic analysis of the functions of the BES1/BZR1 gene family.

Measurement of the Bipolarization Events

We intend to point out the differences which exist between the classical Gini concentration coefficient and a proposed bipolarization index defined for an arbitrary random variable which have a finite support. In fact Gini's index measures only the "poverty degree" for the individuals from a given population taking into consideration their wages. The Gini coefficient is not so sensitive to the significant income variations in the "rich people class" . In practice there are multiple interdependent relations between the pauperization and the socio-economical polarization phenomena. The presence of a strong pauperization aspect inside the population induces often a polarization effect in this society. But the pauperization and the polarization phenomena are not identical. For this reason it isn't always adequate to use a Gini type coefficient, based on the Lorenz order, to estimate the bipolarization level of the individuals from the studied population. The present paper emphasizes these ideas by considering two families of random variables which have a linear or a triangular type distributions. In addition, the continuous variation, depending on the parameter "time" of the chosen distributions, could simulate a real dynamical evolution of the population.

Analysis of Short Bearing in Turbulent Regime Considering Micropolar Lubrication

The aim of the paper work is to investigate and predict the static performance of journal bearing in turbulent flow condition considering micropolar lubrication. The Reynolds equation has been modified considering turbulent micropolar lubrication and is solved for steady state operations. The Constantinescu-s turbulence model is adopted using the coefficients. The analysis has been done for a parallel and inertia less flow. Load capacity and friction factor have been evaluated for various operating parameters.

Structural and Optical Properties ofInxAlyGa1-x-yN Quaternary Alloys

Quaternary InxAlyGa1-x-yN semiconductors have attracted much research interest because the use of this quaternary offer the great flexibility in tailoring their band gap profile while maintaining their lattice-matching and structural integrity. The structural and optical properties of InxAlyGa1-x-yN alloys grown by molecular beam epitaxy (MBE) is presented. The structural quality of InxAlyGa1-x-yN layers was characterized using high-resolution X-ray diffraction (HRXRD). The results confirm that the InxAlyGa1-x-yN films had wurtzite structure and without phase separation. As the In composition increases, the Bragg angle of the (0002) InxAlyGa1-x-yN peak gradually decreases, indicating the increase in the lattice constant c of the alloys. FWHM of (0002) InxAlyGa1-x-yN decreases with increasing In composition from 0 to 0.04, that could indicate the decrease of quality of the samples due to point defects leading to non-uniformity of the epilayers. UV-VIS spectroscopy have been used to study the energy band gap of InxAlyGa1-x-yN. As the indium (In) compositions increases, the energy band gap decreases. However, for InxAlyGa1-x-yN with In composition of 0.1, the band gap shows a sudden increase in energy. This is probably due to local alloy compositional fluctuations in the epilayer. The bowing parameter which appears also to be very sensitive on In content is investigated and obtained b = 50.08 for quaternary InxAlyGa1-x-yN alloys. From photoluminescence (PL) measurement, green luminescence (GL) appears at PL spectrum of InxAlyGa1-x-yN, emitted for all x at ~530 nm and it become more pronounced as the In composition (x) increased, which is believed cause by gallium vacancies and related to isolated native defects.

Developments for ''Virtual'' Monitoring and Process Simulation of the Cryogenic Pilot Plant

The implementation of the new software and hardware-s technologies for tritium processing nuclear plants, and especially those with an experimental character or of new technology developments shows a coefficient of complexity due to issues raised by the implementation of the performing instrumentation and equipment into a unitary monitoring system of the nuclear technological process of tritium removal. Keeping the system-s flexibility is a demand of the nuclear experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be processed stored and accessed for real time simulation and optimization demands the achievement of the virtual technologic platform where the data acquiring, control and analysis systems of the technological process can be integrated with a developed technological monitoring system. Thus, integrated computing and monitoring systems needed for the supervising of the technological process will be executed, to be continued with the execution of optimization system, by choosing new and performed methods corresponding to the technological processes within the tritium removal processing nuclear plants. The developing software applications is executed with the support of the program packages dedicated to industrial processes and they will include acquisition and monitoring sub-modules, named “virtually" as well as the storage sub-module of the process data later required for the software of optimization and simulation of the technological process for tritium removal. The system plays and important role in the environment protection and durable development through new technologies, that is – the reduction of and fight against industrial accidents in the case of tritium processing nuclear plants. Research for monitoring optimisation of nuclear processes is also a major driving force for economic and social development.

Improvement of Photoluminescence Uniformity of Porous Silicon by using Stirring Anodization Process

The electrolyte stirring method of anodization etching process for manufacturing porous silicon (PS) is reported in this work. Two experimental setups of nature air stirring (PS-ASM) and electrolyte stirring (PS-ESM) are employed to clarify the influence of stirring mechanisms on electrochemical etching process. Compared to traditional fabrication without any stirring apparatus (PS-TM), a large plateau region of PS surface structure is obtained from samples with both stirring methods by the 3D-profiler measurement. Moreover, the light emission response is also improved by both proposed electrolyte stirring methods due to the cycling force in electrolyte could effectively enhance etch-carrier distribution while the electrochemical etching process is made. According to the analysis of statistical calculation of photoluminescence (PL) intensity, lower standard deviations are obtained from PS-samples with studied stirring methods, i.e. the uniformity of PL-intensity is effectively improved. The calculated deviations of PL-intensity are 93.2, 74.5 and 64, respectively, for PS-TM, PS-ASM and PS-ESM.

Pro-inflammatory Phenotype of COPD Fibroblasts not Compatible with Repair in COPD Lung

COPD is characterized by loss of elastic fibers from small airways and alveolar walls, with the decrease in elastin increasing with disease severity. It is unclear why there is a lack of repair of elastic fibers. We have examined fibroblasts cultured from lung tissue from normal and COPD subjects to determine if the secretory profile explains lack of tissue repair. In this study, fibroblasts were cultured from lung parenchyma of bronchial carcinoma patients with varying degrees of COPD; controls (non-COPD, n=5), mild COPD (GOLD 1, n=5) and moderate-severe COPD (GOLD 2-3, n=12). Measurements were made of proliferation, senescence-associated beta-galactosidase-1, mRNA expression of IL-6, IL-8, MMP-1, tropoelastin and versican, and protein levels for IL-6, IL-8, PGE2, tropoelastin, insoluble elastin, and versican. It was found that GOLD 2-3 fibroblasts proliferated more slowly (p

Facile Synthesis of Vertically Aligned ZnO Nanowires on Carbon Layer by Vapour Deposition

A facile vapour deposition method of synthesis of vertically aligned ZnO nanowires on carbon seed layer was developed. The received samples were investigated on electronic microscope JSM-6490 LA JEOL and x-ray diffractometer X, pert MPD PRO. The photoluminescence spectra (PL) of obtained ZnO samples at a room temperature were studied using He-Cd laser (325 nm line) as excitation source.

An Adverse Model for Price Discrimination in the Case of Monopoly

We consider a Principal-Agent model with the Principal being a seller who does not know perfectly how much the buyer (the Agent) is willing to pay for the good. The buyer-s preferences are hence his private information. The model corresponds to the nonlinear pricing problem of Maskin and Riley. We assume there are three types of Agents. The model is solved using “informational rents" as variables. In the last section we present the main characteristics of the optimal contracts in asymmetric information and some possible extensions of the model.

MNECLIB2 – A Classical Music Digital Library

Lately there has been a significant boost of interest in music digital libraries, which constitute an attractive area of research and development due to their inherent interesting issues and challenging technical problems, solutions to which will be highly appreciated by enthusiastic end-users. We present here a DL that we have developed to support users in their quest for classical music pieces within a particular collection of 18,000+ audio recordings. To cope with the early DL model limitations, we have used a refined socio-semantic and contextual model that allows rich bibliographic content description, along with semantic annotations, reviewing, rating, knowledge sharing etc. The multi-layered service model allows incorporation of local and distributed information, construction of rich hypermedia documents, expressing the complex relationships between various objects and multi-dimensional spaces, agents, actors, services, communities, scenarios etc., and facilitates collaborative activities to offer to individual users the needed collections and services.

Kerma Profile Measurements in CT Chest Scans– a Comparison of Methodologies

The Brazilian legislation has only established diagnostic reference levels (DRLs) in terms of Multiple Scan Average Dose (MSAD) as a quality control parameter for computed tomography (CT) scanners. Compliance with DRLs can be verified by measuring the Computed Tomography Kerma Index (Ca,100) with a pencil ionization chamber or by obtaining the kerma distribution in CT scans with radiochromic films or rod shape lithium fluoride termoluminescent dosimeters (TLD-100). TL dosimeters were used to record kerma profiles and to determine MSAD values of a Bright Speed model GE CT scanner. Measurements were done with radiochromic films and TL dosimeters distributed in cylinders positioned in the center and in four peripheral bores of a standard polymethylmethacrylate (PMMA) body CT dosimetry phantom. Irradiations were done using a protocol for adult chest. The maximum values were found at the midpoint of the longitudinal axis. The MSAD values obtained with three dosimetric techniques were compared.

Synthesis, Characterization and PL Properties of Cds Nanoparticles Confined within a Functionalized SBA-15 Mesoprous

A simple and dexterous in situ method was introduced to load CdS nanocrystals into organofunctionalized mesoporous, which used an ion-exchange method. The products were extensively characterized by combined spectroscopic methods. X- ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) demonstrated both the maintenance of pore symmetry (space group p6mm) of SBA-15 and the presence of CdS nanocrystals with uniform sizes of about 6 - 8 nm inside the functionalized SBA-15 channels. These mesoporous silica-supported CdS composites showed room temperature photoluminescence properties with a blue shift, indicating the quantum size effect of nanocrystalline CdS.

A Sociocybernetics Data Analysis Using Causality in Tourism Networks

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Resource Matching and a Matchmaking Service for an Intelligent Grid

We discuss the application of matching in the area of resource discovery and resource allocation in grid computing. We present a formal definition of matchmaking, overview algorithms to evaluate different matchmaking expressions, and develop a matchmaking service for an intelligent grid environment.

Hydrodynamic Force on Acoustically Driven Bubble in Sulfuric Acid

Using a force balanced translational-radial dynamics, phase space of the moving single bubble sonoluminescence (m- SBSL) in 85% wt sulfuric acid has been numerically calculated. This phase space is compared with that of single bubble sonoluminescence (SBSL) in pure water which has been calculated by using the mere radial dynamics. It is shown that in 85% wt sulfuric acid, in a general agreement with experiment, the bubble-s positional instability threshold lays under the shape instability threshold. At the onset of spatial instability of moving sonoluminescing (SL) bubble in 85% wt sulfuric acid, temporal effects of the hydrodynamic force on the bubble translational-radial dynamics have been investigated. The appearance of non-zero history force on the moving SL bubble is because of proper condition which was produced by high viscosity of acid. Around the moving bubble collapse due to the rapid contraction of the bubble wall, the inertial based added mass force overcomes the viscous based history force and induces acceleration on the bubble translational motion.

The Effect of Complementary Irrigation in Different Growth Stages on Yield, Qualitative and Quantitative Indices of the Two Wheat (Triticum aestivum L.) Cultivars in Mazandaran

In most wheat growing moderate regions and especially in the north of Iran climate, is affected grain filling by several physical and abiotic stresses. In this region, grain filling often occurs when temperatures are increasing and moisture supply is decreasing. The experiment was designed in RCBD with split plot arrangements with four replications. Four irrigation treatments included (I0) no irrigation (check); (I1) one irrigation (50 mm) at heading stage; (I2) two irrigation (100 mm) at heading and anthesis stage; and (I3) three irrigation (150 mm) at heading, anthesis and early grain filling growth stage, two wheat cultivars (Milan and Shanghai) were cultured in the experiment. Totally raining was 453 mm during the growth season. The result indicated that biological yield, grain yield and harvest index were significantly affected by irrigation levels. I3 treatment produced more tillers number in m2, fertile tillers number in m2, harvest index and biological yield. Milan produced more tillers number in m2, fertile tillers in m2, while Shanghai produced heavier tillers and grain 1000 weight. Plant height was significant in wheat varieties while were not statistically significant in irrigation levels. Milan produced more grain yield, harvest index and biological yield. Grain yield shown that I1, I2, and I3 produced increasing of 5228 (21%), 5460 (27%) and 5670 (29%) kg ha-1, respectively. There was an interaction of irrigation and cultivar on grain yields. In the absence of the irrigation reduced grain 1000 weight from 45 to 40 g. No irrigation reduced soil moisture extraction during the grain filling stage. Current assimilation as a source of carbon for grain filling depends on the light intercepting viable green surfaces of the plant after anthesis that due to natural senescence and the effect of various stresses. At the same time the demand by the growing grain is increasing. It is concluded from research work that wheat crop irrigated Milan cultivar could increase the grain yield in comparison with Shanghai cultivar. Although, the grain yield of Shanghai under irrigation was slightly lower than Milan. This grain yield also was related to weather condition, sowing date, plant density and location conditions and management of fertilizers, because there was not significant difference in biological and straw yield. The best result was produced by I1 treatment. I2 and I3 treatments were not significantly difference with I1 treatment. Grain yield of I1 indicated that wheat is under soil moisture deficiency. Therefore, I1 irrigation was better than I0.

Comparison of Different Advanced Oxidation Processes for Degrading 4-Chlorophenol

The removal efficiency of 4-chlorophenol with different advanced oxidation processes have been studied. Oxidation experiments were carried out using two 4-chlorophenol concentrations: 100 mg L-1 and 250 mg L-1 and UV generated from a KrCl excilamp with (molar ratio H2O2: 4-chlorophenol = 25:1) and without H2O2, and, with Fenton process (molar ratio H2O2:4- chlorophenol of 25:1 and Fe2+ concentration of 5 mg L-1). The results show that there is no significant difference in the 4- chlorophenol conversion when using one of the three assayed methods. However, significant concentrations of the photoproductos still remained in the media when the chosen treatment involves UV without hydrogen peroxide. Fenton process removed all the intermediate photoproducts except for the hydroquinone and the 1,2,4-trihydroxybenzene. In the case of UV and hydrogen peroxide all the intermediate photoproducts are removed. Microbial bioassays were carried out utilising the naturally luminescent bacterium Vibrio fischeri and a genetically modified Pseudomonas putida isolated from a waste treatment plant receiving phenolic waste. The results using V. fischeri show that with samples after degradation, only the UV treatment showed toxicity (IC50 =38) whereas with H2O2 and Fenton reactions the samples exhibited no toxicity after treatment in the range of concentrations studied. Using the Pseudomonas putida biosensor no toxicity could be detected for all the samples following treatment due to the higher tolerance of the organism to phenol concentrations encountered.