Parameters Extraction for Pseudomorphic HEMTs Using Genetic Algorithms

A proposed small-signal model parameters for a pseudomorphic high electron mobility transistor (PHEMT) is presented. Both extrinsic and intrinsic circuit elements of a smallsignal model are determined using genetic algorithm (GA) as a stochastic global search and optimization tool. The parameters extraction of the small-signal model is performed on 200-μm gate width AlGaAs/InGaAs PHEMT. The equivalent circuit elements for a proposed 18 elements model are determined directly from the measured S- parameters. The GA is used to extract the parameters of the proposed small-signal model from 0.5 up to 18 GHz.

The Use of a Tactical Simulator as a Learning Resource at the Norwegian Military Academy

The Norwegian Military Academy (Army) has been using a tactical simulator for the last two years. During this time there has been some discussion concerning how to use the simulator most efficiently and what type of learning one achieves by using the simulator. The problem that is addressed in this paper is how simulators can be used as a learning resource for students concerned with developing their military profession. The aim of this article is to create a wider consciousness regarding the use of a simulator while educating officers in a military profession. The article discusses the use of simulators from two different perspectives. The first perspective deals with using the simulator as a computer game, and the second perspective looks at the simulator as a socio-cultural artefact. Furthermore the article discusses four different ways the simulator can be looked upon as a useful learning resource when educating students of a military profession.

Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation

This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.

The Effect of a Graded Band Gap Window on the Performance of a Single Junction AlxGa1-xAs/GaAs Solar Cell

We have modeled the effect of a graded band gap window on the performance of a single junction AlxGa1-xAs/GaAs solar cell. First, we study the electrical characteristics of a single junction AlxGa1-xAs/GaAs solar cell, by employing an optimized structure for this solar cell, we show that grading the band gap of the window can increase the conversion efficiency of the solar cell by about 1.5%, and can also improve the quantum efficiency of the solar cell especially at shorter wavelengths.

Effects of Double Delta Doping on Millimeter and Sub-millimeter Wave Response of Two-Dimensional Hot Electrons in GaAs Nanostructures

Carrier mobility has become the most important characteristic of high speed low dimensional devices. Due to development of very fast switching semiconductor devices, speed of computer and communication equipment has been increasing day by day and will continue to do so in future. As the response of any device depends on the carrier motion within the devices, extensive studies of carrier mobility in the devices has been established essential for the growth in the field of low dimensional devices. Small-signal ac transport of degenerate two-dimensional hot electrons in GaAs quantum wells is studied here incorporating deformation potential acoustic, polar optic and ionized impurity scattering in the framework of heated drifted Fermi-Dirac carrier distribution. Delta doping is considered in the calculations to investigate the effects of double delta doping on millimeter and submillimeter wave response of two dimensional hot electrons in GaAs nanostructures. The inclusion of delta doping is found to enhance considerably the two dimensional electron density which in turn improves the carrier mobility (both ac and dc) values in the GaAs quantum wells thereby providing scope of getting higher speed devices in future.

Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array

ZnO nanostructures including nanowires, nanorods, and nanoneedles were successfully deposited on GaAs substrates, respectively, by simple two-step chemical method for the first time. A ZnO seed layer was firstly pre-coated on the O2-plasma treated substrate by sol-gel process, followed by the nucleation of ZnO nanostructures through hydrothermal synthesis. Nanostructures with different average diameter (15-250 nm), length (0.9-1.8 μm), density (0.9-16×109 cm-2) were obtained via adjusting the growth time and concentration of precursors. From the reflectivity spectra, we concluded ordered and taper nanostructures were preferential for photovoltaic applications. ZnO nanoneedles with an average diameter of 106 nm, a moderate length of 2.4 μm, and the density of 7.2×109 cm-2 could be synthesized in the concentration of 0.04 M for 18 h. Integrated with the nanoneedle array, the power conversion efficiency of single junction solar cell was increased from 7.3 to 12.2%, corresponding to a 67% improvement.

Vertical GAA Silicon Nanowire Transistor with Impact of Temperature on Device Parameters

In this paper, we present a vertical wire NMOS device fabricated using CMOS compatible processes. The impact of temperature on various device parameters is investigated in view of usual increase in surrounding temperature with device density.

Structural Simulation of a 4H-Sic Based Optically Controlled Thyristor Using a GaAs Based Optically Triggered Power Transistor and Its Application to DC-DC Boost Converter

In the present simulation work, an attempt is made to study the switching dynamics of an optically controlled 4HSiC thyristor power semiconductor device with the use of GaAs optically triggered power transistor. The half-cell thyristor has the forward breakdown of 200 V and reverse breakdown of more than 1000 V. The optically controlled thyristor has a rise time of 0.14 μs and fall time of 0.065 μs. The turn-on and turn-off delays are 0.1 μs and 0.06 μs, respectively. In addition, this optically controlled thyristor is used as a control switch for the DC-DC Boost converter. The pn-diode used for the converter has the forward drop of 2.8 V and reverse breakdown of around 400 V.

Detection of Oxidative Stress Induced by Mobile Phone Radiation in Tissues of Mice using 8-Oxo-7, 8-Dihydro-2'-Deoxyguanosine as a Biomarker

We investigated oxidative DNA damage caused by radio frequency radiation using 8-oxo-7, 8-dihydro-2'- deoxyguanosine (8-oxodG) generated in mice tissues after exposure to 900 MHz mobile phone radio frequency in three independent experiments. The RF was generated by a Global System for Mobile Communication (GSM) signal generator. The radio frequency field was adjusted to 25 V/m. The whole body specific absorption rate (SAR) was 1.0 W/kg. Animals were exposed to this field for 30 min daily for 30 days. 24 h post-exposure, blood serum, brain and spleen were removed and DNA was isolated. Enzyme-linked immunosorbent assay (ELISA) was used to measure 8-oxodG concentration. All animals survived the whole experimental period. The body weight of animals did not change significantly at the end of the experiment. No statistically significant differences observed in the levels of oxidative stress. Our results are not in favor of the hypothesis that 900 MHz RF induces oxidative damage.

A Strategy for a Robust Design of Cracked Stiffened Panels

This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.

On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements

In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.

A New Physical Modeling for Multiquantum Well Structure APD Considering Nonuniformity of Electric Field in Active Regin

In the present work we model a Multiquantum Well structure Separate Absorption and Charge Multiplication Avalanche Photodiode (MQW-SACM-APD), while the Absorption region coincide with the MQW. We consider the nonuniformity of electric field using split-step method in active region. This model is based on the carrier rate equations in the different regions of the device. Using the model we obtain the photocurrent, and dark current. As an example, InGaAs/InP SACM-APD and MQW-SACM-APD are simulated. There is a good agreement between the simulation and experimental results.

Fabrication and Characterization of Poly-Si Vertical Nanowire Thin Film Transistor

In this paper, we present a vertical nanowire thin film transistor with gate-all-around architecture, fabricated using CMOS compatible processes. A novel method of fabricating polysilicon vertical nanowires of diameter as small as 30 nm using wet-etch is presented. Both n-type and p-type vertical poly-silicon nanowire transistors exhibit superior electrical characteristics as compared to planar devices. On a poly-crystalline nanowire of 30 nm diameter, high Ion/Ioff ratio of 106, low drain-induced barrier lowering (DIBL) of 50 mV/V, and low sub-threshold slope SS~100mV/dec are demonstrated for a device with channel length of 100 nm.

The Emission Spectra Due to Exciton-Exciton Collisions in GaAs/AlGaAs Quantum Well System

Optical emission based on excitonic scattering processes becomes important in dense exciton systems in which the average distance between excitons is of the order of a few Bohr radii but still below the exciton screening threshold. The phenomena due to interactions among excited states play significant role in the emission near band edge of the material. The theory of two-exciton collisions for GaAs/AlGaAs quantum well systems is a mild attempt to understand the physics associated with the optical spectra due to excitonic scattering processes in these novel systems. The four typical processes considered give different spectral shape, peak position and temperature dependence of the emission spectra. We have used the theory of scattering together with the second order perturbation theory to derive the radiative power spontaneously emitted at an energy ħω by these processes. The results arrived at are purely qualitative in nature. The intensity of emitted light in quantum well systems varies inversely to the square of temperature, whereas in case of bulk materials it simply decreases with the  temperature.

Energy Density Increasing in the Channel of Super-High Pressure Megaampere Discharge due to Resonance of Different Type Oscillations of the Channel

Discharges in hydrogen, ignited by wire explosion, with current amplitude up to 1.5 MA were investigated. Channel diameter oscillations were observed on the photostreaks. Voltage and current curves correlated with the photostreaks. At initial gas pressure of 5-35 MPa the oscillation period was proportional to square root of atomic number of the initiating wire material. These oscillations were associated with aligned magnetic and gas-kinetic pressures. At initial pressure of 80-160 MPa acoustic pressure fluctuations on the discharge chamber wall were increased up to 150 MPa and there were the growth of voltage fluctuations on the discharge gap up to 3 kV simultaneously with it. In some experiments it was observed abrupt increase in the oscillation amplitude, which can be caused by the resonance of the acoustic oscillations in discharge chamber volume and the oscillations connected with alignment of the gaskinetic pressure and the magnetic pressure, as far as frequencies of these oscillations are close to each other in accordance with the estimates and the experimental data. Resonance of different type oscillations can produce energy density increasing in the discharge channel. Thus, the appropriate initial conditions in the experiment allow to increase the energy density in the discharge channel

High Performance In0.42Ga0.58As/In0.26Ga0.74As Vertical Cavity Surface Emitting Quantum Well Laser on In0.31Ga0.69As Ternary Substrate

This paper reports on the theoretical performance analysis of the 1.3 μm In0.42Ga0.58As /In0.26Ga0.74As multiple quantum well (MQW) vertical cavity surface emitting laser (VCSEL) on the ternary In0.31Ga0.69As substrate. The output power of 2.2 mW has been obtained at room temperature for 7.5 mA injection current. The material gain has been estimated to be ~3156 cm-1 at room temperature with the injection carrier concentration of 2×1017 cm-3. The modulation bandwidth of this laser is measured to be 9.34 GHz at room temperature for the biasing current of 2 mA above the threshold value. The outcomes reveal that the proposed InGaAsbased MQW laser is the promising one for optical communication system.

IT Management: How IT Managers Gain IT knowledge

It is not a secret that, IT management has become more and more and integrated part of almost all organizations. IT managers posses an enormous amount of knowledge within both organizational knowledge and general IT knowledge. This article investigates how IT managers keep themselves updated on IT knowledge in general and looks into how much time IT managers spend on weekly basis searching the net for new or problem solving IT knowledge. The theory used in this paper is used to investigate the current role of IT managers and what issues they are facing. Furthermore a research is conducted where 7 IT managers in medium sized and large Danish companies are interviewed to add further focus on the role of the IT manager and to focus on how they keep themselves updated. Beside finding substantial need for more research, IT managers – generalists or specialists – only have limited knowledge resources at hand in updating their own knowledge – leaving much initiative to vendors.

Parametric Optimization of Hospital Design

Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements and preferences of the hospital with respect to performances. The design model takes point of departure in the hospital functionalities as a set of defined parameters and rules describing the design requirements and preferences.

The Effect of Variable Incubation Temperatures on Hatchability and Survival of Goldlined Seabream, Rhabdosargus sarba (Forsskål,1775) Larvae

The effect of varying holding temperature on hatching success, occurrence of deformities and mortality rates were investigated for goldlined seabream eggs. Wild broodstock (600 g) were stocked at a 2:1 male-female ratio in a 2 m3 fiberglass tank supplied with filtered seawater (37 g L-1 salinity, temp. range 24±0.5 oC [day] and 22±1 oC [night], DO2 in excess of 5.0mg L-1). Females were injected with 200 IU kg-1 HCG between 08.00 and 10.00 h and returned to tanks to spawn following which eggs were collected by hand using a 100μm net. Fertilized eggs at the gastrulation stage (120 L-1) were randomly placed into one of 12 experimental 6 L aerated (DO2 5 mg L-1) plastic containers with water temperatures maintained at 24±0.5 oC (ambient), 26±0.5 oC, 28± 0.5 oC and 30±0.5 oC using thermostats. Each treatment was undertaken in triplicate using a 12:12 photophase:scotophase photoperiod. No differences were recorded between eggs reared at 24 and 26 oC with respect to viability, deformity, mortality or unhatched egg rates. Increasing temperature reduced the number of viable eggs with those at 30 oC returning poorest performance (P < 0.05). Mortality levels were lowest for eggs incubated at 24 and 26 oC. The greatest level of deformities recorded was that for eggs reared at 28 oC.

3D Quantum Numerical Simulation of Horizontal Rectangular Dual Metal Gate\Gate All Around MOSFETs

The integrity and issues related to electrostatic performance associated with scaling Si MOSFET bulk sub 10nm channel length promotes research in new device architectures such as SOI, double gate and GAA MOSFET. In this paper, we present some novel characteristic of horizontal rectangular gate\gate all around MOSFETs with dual metal of gate we obtained using SILVACO TCAD tools. We will also exhibit some simulation results we obtained relating to the influence of some parameters variation on our structure, that having a direct impact on their threshold voltage and drain current. In addition, our TFET showed reasonable ION/IOFF ratio of (104) and low drain induced barrier lowering (DIBL) of 39 mV/V.