On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements

In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.




References:
[1] H. Altenbach, J. Altenbach, W. Kissing, Mechanics of Composite
Structural Elements, Berlin: Springer, 2010.
[2] N. Engheta and R.W. Ziolkowski (Ed.), Introduction, History and
Fundamental Theories of Double-Negative (DNG) Metamaterials,
Metamaterials: Physics and Engineering Explorations, Hoboken: Wiley,
2006, ch.1.
[3] F. Capolino (Ed.), Theory and Phenomena of Metamaterials, Boca
Raton: CRC Press, 2009.
[4] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, Chiral
metamaterials: simulations and experiments. J. Opt. A: Pure Appl. Opt.,
11 (2009), pp. 1--10.
[5] K. Fricke, Piezoelectric properties of GaAs for application in stress
transducers, J. Appl. Phys., 70 (1991), pp. 914--918.
[6] Y.W. Hsu, S.S. Lu, P.Z. Chang, Piezoresisitive response induced by
piezoelectric charges in n-type GaAs mesa resistors for application in
stress transducers, J. Appl.Phys., 85 (1999), 1, pp. 333-340.
[7] P. Zhao, D. Pisani, C. S Lynch, Piezoelectric strain sensor/actuator
resettes, Smart Materials and Structures, 20(2011)10, pp. 11-17.
[8] E. A. Vopilkin, V.I. Shashkin, et. al., Anisotropic effect in
microelectromechanical systems based on the Organizational Structure
of epitaxial heterostructures, J. Appl.Phys., 79 (2009) 10, pp. 75-79 (in
Russ).
[9] G. A. Maugin, Continuum Mechanics of Electromagnetic Solids,
Oxford: Elsevier, 1988.
[10] T. Ikeda, Fundamentals of Piezoelectricity, New York: Oxford
University Press, 1990.
[11] E. V. Naumova, V. Ya. Prinz, et. al., Manufacturing chiral
electromagnetic metamaterials by directional rolling of strained
heterofilms, J. Opt. A: Pure Appl. Opt. 11 (2009) 7, pp. 627--632.
[12] V. Ya. Prinz, S. V. Golod, Elastic silicon-film-based nanoshells:
formation, properties, and application, Journal of Applied Mechanics
and Technical Physics, 47 (2006) 6, pp. 868 -- 878.
[13] V. Ya. Prinz, Precise semiconductor nanotubes and nanoshells
fabricated on (110) and (111) Si and GaAs Physica E, 23 (2004), pp. 260
-- 268.
[14] V. Ya. Prinz et al, Free-standing and overgrown InGaAs/GaAs
nanotubes, nanohelices and their arrays, Physica E, 6 (2000), pp. 828--
831.
[15] V. Mittol, Optimization of Polymer Nanocomposite Properties,
Weinheim: Wiley, 2010.
[16] J. H. Koo, Polymer Nanocomposites. Processing, Characterization, and
Applications. New York: McGraw-Hill Companies, 2006.
[17] J. E. Shigley, Ch. R. Mischke, R. G. Budynas, PMechanical
Engineering Design. New York: McGraw-Hill Companies, 2004.
[18] Y.-W. Mai, Zh.-Z. Yu. Ñ (Ed.), Polymer nanocomposites, Cambridge:
Woodhead Publishing Limited, 2006.
[19] A. A. Girchenko, V. A. Eremeyev and N. F. Morozov, Modelling of
spriral nanofilms with piezoelectric properties, Physical Mesomechanics,
14 (2011), pp. 10--15.
[20] R. Christensen, Mechanics of Composite Materials, Weinheim: Wiley,
1979.
[21] W. Voigt, Lehrbuch der Kristallphysik. Johnson Reprint Corp, 1966.
[22] Simulia ABAQUS. User's manual. 6.10.1. Johnson Reprint Corp, 2011.