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1 
Abstract—In the present work we investigate both the elastic and 

electric properties of a chiral material. We consider a composite 
structure made from a polymer matrix and anisotropic inclusions of 
GaAs taking into account piezoelectric and dielectric properties of 
the composite material. The principal task of the work is the 
estimation of the functional properties of the composite material.  

 
Keywords—Coupled electromechanical behavior, Composite 

structure, Chiral metamaterial.  

I. INTRODUCTION 
ETAMATERIALS are composite materials with 
properties, which are dependent both on the physical 

properties of individual components and the macrostructure. 
Usually the individual components are the reason for the 
effective macroscopic behavior of a structure [2, 3]. 

The complex materials can be synthesized by an insertion in 
a matrix of various periodic structures with different 
geometric shapes, which modify the functional properties of 
the composite material. An example of such structures is a 
periodic matrix with shells having a helical geometry, and 
which are sealed in a polymer matrix [11]-[14]. 

By the synthesis of such complex structures a variation of 
different parameters of the material is possible (e.g. 
dimensions of the structure, shape, frequency, etc.). That 
makes possible to obtain significantly different properties of 
the resulting material and to find various areas of applications. 

In recent years significant progress in synthesis of 
metamaterials with perspective and unusual functional 
properties is observed. In particular, the helical shell structures 
have found various applications, for example, in 
microelectromechanical and nanoelectromechanical systems 
(MEMS/NEMS), optics and medicine, see e.g. [2-4]. 

The research of artificial complex materials requires 
interdisciplinary knowledge and involves various fields of 
application areas as development of MEMS/NEMS, solid state 
physics, optoelectronics, material science, theory of composite 
structures, nanoscience, etc.,  [3, 4, 7]. In this case the 
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question of the micro-macro behaviour of metamaterials is 
connected with the prediction of functional properties of such 
structures,  [19]. 

In the present work we investigate both the elastic and the 
electric properties of a chiral material and consider the 
composite structure made from a polymer matrix and 
anisotropic inclusions of GaAs with taking into account the 
piezoelectric and dielectric properties of the composite 
material. The principal task of the present work is the 
estimation of the functional properties of the composite. 

II. PROBLEM STATEMENT 
 For the determination of functional properties of the 

artificial composite material we consider a characteristic unit 
cell of the material. Within the frame of electroelasticity one 
can make a problem statement which requires the unique 
solution of the following system of equation. The basic 
equations of electroelastic bodies, with the geometry as is 
depicted on Fig. 1, in the case of quasielectrostatics and 
absence of external loads take the form [9]: 

• Equation of equilibrium (no body forces)  
 

0σ =⋅∇                                       (1) 
 
• Maxwell's equations (the magnetic component is ignored)  
 

ϕ∇⋅∇ =   0,= ED                           (2) 
 
• Constitutive equations  
 

,=   ,:= T EdεeDEeεCσ ⋅−⋅⋅−               (3) 
 
• Strain tensor in case of the small deformations  
 

)(
2
1= Tuuε ∇+∇                                     (4) 

 
• Boundary conditions  
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In Eqs. (1)-(5) the following notation is used: n  is the 

normal vector to the inclusion boundary 
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q
21== Γ∪Γ∪ΓΓ∪ΓΓ ϕϕσu  (on the boundary Γ  can be 

applied both the mechanical and electrical types of the 
boundary conditions respective to the type of piezoelectric 
task, Figs. 3a) and 3b)), u  is the vector of displacements, E  is 
the vector of the electric field expressed by the electric 
potential ϕ , σ  is the stress tensor, D  is the vector of the 
electric induction (also called electrical flux vector, electric 
displacement vector), ε  is the strain tensor, C , e , d  are the 
elasticity tensor, the tensors of the piezoelectric and the 
dielectric parameters, respectively. p  and q  are the external 
load on the surface element with the normal vector n and 
surface charge, [10]. Here σΓΓ =q , 21= ϕϕ Γ∪ΓΓu , according 

to the type of piezoelectric task, see Fig. 3. The difference of 
the electric potential applied along 1

ϕΓ  and 2
ϕΓ  generates the 

electrical flux vector. This gradient of the electrical potential 
is the reason of the mechanical response of internal force 
generated by the inverse piezoelectric effect. 

 

 
Fig. 1 Geometric description of helixes. Cylindrical shell with screw 

cuts: a) Helical spring shell; b) Loft of one coil of a median shell 
surface 

 
The constitutive equations (3) and the boundary conditions 

(5) one can call the ][ ϕ−u  form. This type of piezoelectric 
problem statement depends on the constitutive equations and 
boundary conditions in present form (3) and (5). 

In addition, we take into account that the normal component 
of the electric flux vector D  is continuous on the matrix-
inclusion interface. Consequently, according to the 
superposition principle for the linear physical systems 
(additive property), one can have the continuity of the others 
field variables [17]. 

III. MATERIAL OVERVIEW 
 In the present work we consider a composite, which 

consists of a polyimide matrix (PA) with a periodic located 
array of helical shell-like structures. The question of the 
choice of the alternative master in the metamaterial is 
connected with the applications and the relative simple and 
cheap possibilities of a synthesis of such structures. 

The process of a creation of artificial composite structures 
with helical inclusions. The standard process of nanohelix 

creation consist in the epitaxial deposition of a layer on a 
substrate. Then by the internal stresses this layer separates 
from the substrate and roll in a helix relative anisotropic 
properties and result bending moment in this layer. It is also 
possible to laminate shells to each other. A result of such 
lamination is a multilayer composite with helical shape, Fig. 1. 

After forming of an array of helices this array is sealed in 
the polymer matrix. The polymer matrix allows to keep the 
form, size and location of helixes in the structure. The 
principal task of a polymer matrix is the common work of 
inclusions, uniformly of stress distribution and failure 
protection, see e.g. [11-13]. 

For a more precise understanding of the behaviour of the 
composite structure briefly consider the components material 
in a particularly and process of a such metamaterial 
composition. 

In the capacity of polymer matrix in a present work the 
polyimide structure is used. These polymers have particular 
thermal and mechanical properties [18]. The dielectric 
properties of these polymers can be improved by reduction of 
the values of dielectric parameters [15, 16, 18]. The use of 
fluorinated polyimides can reduce the dielectric parameter 
value from   3.4  to   2.8. 

We use the following properties of the PA-material: 
Young's modulus E =2.30 (MPa), Poisson's ratio ν =0.28, 
dielectric constant d =0.28. 

The inclusions in the polymer matrix are piezoelectric 
helical one-layer structures. The material of the shells is 
GaAs, which has a cubic symmetry. More specifically GaAs is 
an instance of a non-centrosymmetrical classes according to 
piezoelectric constants distribution. It is the 43m and 23 
classes by the Hermann - Mauguin notation [8]. This type of 
symmetry is close to the orthorhombic class as 222, but in 
case of a cubic symmetry all of the piezoelectric moduli are 
equal,  [21]. 

Hereby in case of the cubic symmetry for the classes 43m 
and 23 one can see the following matrix representation of the 
piezoelectric moduli: 
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 For the orthorhombic symmetry, class 222, the 

piezoelectric matrix is: 
 

⎟
⎟
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⎛

⋅⋅⋅⋅⋅
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e
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e
=][e  (7) 

 
where ⋅  denotes zero values. 

We taking into account the following properties of the 
GaAs shell: dielectric constant d=12.9, piezoelectric modulus 

 102.69=e 12
14

−⋅− (m/V), and coefficients of the second  
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order stiffness tensor  1011.9=C 4
11 ⋅ (MPa), 

 105.34=C 4
12 ⋅ (MPa),  105.96=C 4

44 ⋅ (MPa) (others 
moduli in the stiffness matrix are equal zero), see [5], [6]. 

It is obvious, that the effect of inclusion deformation under 
applied electrical field is the reason to get deformation of the 
composite structure. Hereby, one can see the presence of a 
direct and inverse piezoelectric effect, this means that one can 
understand the result artificial composite material as a 
piezoelectric one. The deformation behavior of the composite 
structure, which formed from described above materials, differ 
from the ordinary electroelastic systems, because the source of 
intentional stresses is the deformation of a piezoelectric shell. 
Consider an unit cell of the metamaterial, which consist of 
isotropic polyimide matrix and anisotropic one-layer helical 
inclusion of GaAs. 

For account of a piezoelectric effect an additional disparity 
of a lattice spacing in a contact matrix/inclusion. The value of 
the resultant stresses of the unit cell by deformation of an 
inclusion, is from the conditions for mechanical equilibrium of 
the system and boundary conditions defined. The result 
composite material one can consider as a local orthotropic 
composite with a symmetry axis directed at tangential to the 
surfaces of the helixes, see Fig. 2 (a).  

 

 
Fig. 2 Representation of shells, m is the plane of symmetry (a) 

Lattice arrangement; (b) Right/left-hand twist of the helixes, n is the 
normal vector according to the plane of the mirror reflection 

 
  For the definition of effective values, which are material 

characterized, one can use the homogeneous methods [20]. 
Hereby it is necessary to define 7 independent constants, 
which form a stiffness matrix of the resulting chiral material. 

Hereby one should define 5 independent constants of a 
piezoelectric tensor and 3 independent constants of a dielectric 
matrix. For the orthorhombic class with the symmetry mm2 in 
case of (001) and (100) orientation the piezoelectric tensor in 
a matrix representation takes the form (8) and (9), 
respectively.  
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IV. COMPUTATIONAL ASPECTS 
Consider the physical meaning of the constants, which is 

necessary to the describing of the matamaterial behaviour. The 
physical meaning of the piezoelectric constants according to 
the matrix representation as one can see above and with taking 
into account the (100)-material orientation is following, [21]: 
• Modulus 11e  is induced polarization of the material in 

direction 1 per unit stress applied in direction 1 
(directions 1-2-3 form the orthogonal triad or basis of 
space). By the inverse piezoelectric effect induced strains 
in direction 1 per unit electric field applied in the 
direction 1.  

• Modulus 12e  is induced polarization of the material in 
direction 1 per unit stress applied in direction 2. By the 
inverse piezoelectric effect induced strains in direction 2 
per unit electric field applied in the direction 1.  

• Modulus 13e  is induced polarization of the material in 
direction 1 per unit stress applied in direction 3. By the 
inverse piezoelectric effect induced strains in direction 3 
per unit electric field applied in the direction 1.  

• Modulus 24e  is induced polarization of the material in 
direction 2 per unit shear stress applied in the 12-plane. 
By the inverse piezoelectric effect induced shear strain in 
the 12-plane per unit electric field applied in the direction 
2.  

• Modulus 35e  is induced polarization of the material in 
direction 3 per unit shear stress applied in the 13-plane. 
By the inverse piezoelectric effect induced shear strain in 
the 13-plane per unit electric field applied in the direction 
3.  

If we consider the permittivity of a chiral material one can 
get the following definitions, [21]: 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
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⎝
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⋅⋅
⋅⋅
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33
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11

d
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d
=][d  (10) 

 
where for the (100) orientation d13 is the permittivity for a 
dielectric displacement in the direction 1 and electric field in 
the direction 3 under constant stress, d22 is the permittivity for 
a dielectric displacement in the direction 2 and electric field in 
the direction 2 under constant stress, d11 is the permittivity for 
a dielectric displacement in the direction 3 and electric field in 
the direction 1 under constant stress. By consideration of the 
first type of a constitutive equation (3) and respective 
boundary condition (5) one can present the task of the 
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determination of the functional elastic and electric constants 
by the solving the following subtasks, see Table I.  
 

TABLE I  
COMPUTATIONAL ASPECT  

][ ϕ−u  RELATIONS, 〈⋅〉  IS A AVERAGED VALUES BY VOLUME OF 

FINITE ELEMENTS 
Condition Elastic properties Electric properties 

011 ≠ε  

〉〈
〉〈

11

11eff
11 =C

ε
σ

 
〉〈
〉〈

11

1eff
11 =e

ε
D

 

022 ≠ε  

〉〈
〉〈

22

22eff
22 =C

ε
σ

 
〉〈
〉〈

22

2eff
12 =e

ε
D

 

033 ≠ε  

〉〈
〉〈

33

33eff
33 =C

ε
σ

 
〉〈
〉〈

33

3eff
13 =e

ε
D

 

012 ≠ε  

〉〈
〉〈

12

12eff
44 =C

ε
σ

 
〉〈
〉〈

12

2eff
24 =e

ε
D

 

013 ≠ε  

〉〈
〉〈

13

13eff
55 =C

ε
σ

 
〉〈
〉〈

13

3eff
35 =e

ε
D

 

0E1 ≠   

〉〈
〉〈

−
1

3eff
31 E

=d D
 

0E2 ≠   

〉〈
〉〈

2

2eff
22 E

=d D
 

0E3 ≠   

〉〈
〉〈

3

1eff
13 E

=d D
 

  
Here we accept as a nonzero components of strain tensor 

and vector of the electrical field only which are indicated in 
Table I. The subtasks with nonzero components of the strain 
reflect the DPE-analysis and the rest tasks is connected with 
the IPE-problem. It should be noted, that the determination of 
the engineering constants is possible. And the coefficients of a 
stiffness matrix can be expressed in terms of generalized 
Young’s moduli and Poisson’s ratios (which have the same 
significance as Young’s modulus and Poisson’s ratio for 
uniaxial loading along the three basis vectors 1-2-3). Hereby 
one can retrieve the stiffness matrix by the determination 
Young’s moduli iE  and Poisson’s ratios 31=, , ÷jiijν . Then 

the missing in the in Table I coefficients of the stiffness matrix 
can be following [20]:  

 
,)(=Ceff γννν jkkijiiij E +  (12) 

where )21/(1= 133221133132232112 νννννννννγ −−−− , 

jjiiij EE /=/ νν , 1,2,3= : kjino ≠≠∑ , see [1].  

V. MODELING SCHEME 
By determination of the functional properties we consider 

the unit cell of the chiral material which consist from the one-
layer piezoelectric inclusion of GaAs and isotropic matrix of 
polyimide Fig. 3. By model formulation of the unit cell in a 

finite element package Simulia ABAQUS we defined the 
material of the matrix as a piezoelectric material with the zero 
piezoelectric matrix, because it is necessary for this task to 
have the electric degrees of freedom in a every finite element. 
This is not upset the physical meaning of using only dielectric 
master with a piezoelectric inclusion, because we have not the 
piezoelectric contribution to the electro-elastic behaviour of a 
unit cell matrix. The presence both displacement and electrical 
potential as nodal variables makes it possible to use all 
necessary types of boundary condition for a matrix and on the 
interface region of different materials. 

 

 
Fig. 3 Boundary conditions: (a) Direct piezoelectric effect (b) Inverse 

piezoelectric effect 
 

For example the difference of a electric potentials 
assignment for a task, in which we define the effective 
dielectric constants by the process of inverse piezoelectric 
process Fig. 3 (b). 

 

 
Fig. 4 Assembly of the composite material, right-hand twist of 

helixes (a) 123 view (b) 12 view 

 

 
Fig. 5 Finite element triangulation (general quantity of elements 
137738) (a) Finite element mesh of matrix, element type C3D4E, 
element quantity – 128873 (b)Finite element mesh of inclusion, 
element type C3D4E, element quantity - 8865 (Simulia Abaqus 

triangulation) 
  

It should be noted, that matrix and inclusion are meshed 
with the same type of the finite elements, as a 4-node linear 
piezoelectric tetrahedron Fig. 5. For the meshing of the 
general structure we used increasing of the size of interior 
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elements with a moderate growth. Where is possibly to 
appropriate was used the technique of the mapped tri meshing 
on the bounding faces [22]. 

The assembly of the matrix and inclusion is the one part, 
which construct by the merge of the both initial parts. This 
solve the problem of a complication aspect of the conductivity 
between standard "tie"-contact on the matrix/inclusion 
boundary interface [22] with taking into account the 
continuity condition of the electrical flux vector through 
matrix/inclusion interface. 

Hereby for the definition all of the functional mouduli, 
which described the material behaviour of a chiral material, is 
necessary to implement 6 tests with mechanical boundary 
conditions and 3 tasks for a inverse piezoelectric effect, see as 
example Fig. 6. 

 

 
Fig. 6 Result example by the DPE (a) Determination of a eff

11e  and 
eff
11C  by non zero 11ε  component (b) Determination of a eff

12e  and 
eff
22C  by non zero 22ε  component (c) Determination of a eff

13e  and 
eff
33C  by non zero 33ε  component 

 
By the implementations a few tasks on the direct and 

inverse piezoelectric effect the material properties of the 
artificial composite material were estimated. 

With taking into account the general form of the tensors the 
coefficient of the stiffness matrix in units (MPa) in case of 
transversal anisotropy and are: 

 
4

13
4

12
4

11 101.169=C ,100.937=C ,102.307=C ⋅⋅⋅
4

33
4

23
4

22 102.289=C ,101.172=C ,102.299=C ⋅⋅⋅
4

66
4

55
4

44 100.905=C ,100.906=C ,100.906=C ⋅⋅⋅  
 

Consider also the obtained piezoelectric coefficients in 
units (m/V) and dielectric constants. It should be noted, that 
the absent coefficients are equal zero. 

 
17

13
18

12
17

11 104.04=e ,106.81=e ,106.26=e −−− ⋅⋅⋅
16

24
16

24 101.65=e ,101.14=e −− ⋅⋅
2.79=d 2.8,=d 2.8,=d 312213 −  

 
Rather for an understanding of a result difference between 

the structures with a various materials. We also conducted in 
the case described above the analysis with a more harder 
matrix and the same inclusions. The averaged functional 
properties for a matrix of Al2O3 and GaAs inclusions one can 
see below with taking into account the following properties 

for the Al2O3: Young modulus E=3.00 (MPa), Poisson ratio 
0.20=ν , dielectric constant d=9.10. 

Let us consider the coefficients of the stiffness matrix in 
units (MPa) in case of transversal anisotropy: 

 
4

13
4

12
4

11 100.971=C ,101.027=C ,102.997=C ⋅⋅⋅
4

33
4

23
4

22 102.982=C ,100.950=C ,102.987=C ⋅⋅⋅
4

66
4

55
4

44 101.250=C ,101.249=C ,101.250=C ⋅⋅⋅  
 

Let us consider also the obtained piezoelectric coefficients 
in units (m/V) and dielectric constants: 

 
17

13
18

12
17

11 107.44=e ,105.47=e ,101.50=e −−− ⋅⋅⋅
16

24
16

24 101.70=e ,102.36=e −− ⋅⋅
9.1=d 9.1,=d 9.1,=d 312213 −  

 
The engineering constants which described the elastic 

properties for the structure polyimide/GaAs one can see in 
Table II  and for the Al2O3/GaAs in Table III. 

 
TABLE  II 

RESULT VALUES FOR THE POLYIMIDE/GAAS: ENGINEERING CONSTANTS 
  Young's modulus Poisson's ratio 

 1E  3.075e+4 12ν  0.22 

  21ν  0.23 

 2E  2.99e+4 23ν  0.20 

  32ν  0.20 

 3E  2.98e+4 13ν  0.20 

  31ν  0.21 

 
TABLE  III 

RESULT VALUES FOR THE AL2O3/GAAS: ENGINEERING CONSTANTS 
  Young's modulus Poisson's ratio 

 1E  2.395e+4 12ν  0.126 

  21ν  0.127 

 2E  2.388e+4 23ν  0.285 

  32ν  0.456 

 3E  1.491e+4 13ν  0.283 

  31ν  0.454 

 
Consider the similar model of the chiral material with the 

left twisting of the inclusions. It should be noted that the 
inclusion volume fraction is not changed. We are using the 
polyamide/GaAs structure. By the consideration of the 
resultant functional properties (in units (MPa)) which are 
presented below one can make a remark about the difference 
of the behaviour chiral material with the left and right twisting 
of the inclusions. 
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4
13

4
12

4
11 100.971=C ,101.18=C ,102.30=C ⋅⋅⋅

4
33

4
23

4
22 102.30=C ,100.965=C ,102.29=C ⋅⋅⋅

4
66

4
55

4
44 100.906=C ,100.907=C ,100.907=C ⋅⋅⋅  

 
Let us consider also the obtained piezoelectric coefficients 

in units (m/V) and dielectric constants: 
 

17
13

18
12

17
11 104.12=e ,106.84=e ,106.261=e −−− ⋅−⋅−⋅−

16
24

16
24 101.67=e ,101.15=e −− ⋅−⋅−

2.82=d 2.80,=d 2.80,=d 312213 −  
 

One can see, that elastic behaviour of the material was not 
strongly change, as and the dielectric properties. The dielectric 
properties as a first case present the isotropic behaviour. It is 
note, that changing of the twisting of the inclusions does not 
reflect the symmetry of the composite. And all isotropic 
properties will be saved. But can reflect the difference in the 
polarization of the resulting material. It is clearly one can see 
by consideration of the matrix of the piezoelectric constants, 
which is a reflection of the piezoelectric tensor by applying of 
the reflection in a plane with the normal vector n. This 
reflection operator can be written in form nnIQ ⊗− 2= , 
where I  is the identity tensor. 

On the supposition of the orthorhombic class of properties 
symmetry in case of the piezoelectric modulus one can see, 
that polarization of the resulting composite was changed. This 
is the principal result of this research because this makes 
possibly to construct the particular polarization of the artificial 
chiral materials. 

VI. CONCLUSION 
In the present work a chiral composite is considered. The 

finite element simulation of a unit cell of the chiral composite 
is implemented. The difference of the results of the chiral 
material behaviour by variation of the functional properties of 
basic materials and twisting of the helixes is noted. The 
presence of anisotropy according to mechanical and electrical 
behaviour in a composite is established. 

By consideration of averaging results in the case of the 
polymeric matrix and matrix of Al2O3, which is more stiff 
than polymer one can note the appearance of the equal 
anisotropy as have the matrix of the chiral material. On this 
evidence one can draw the conclusion, that a conservation of 
the chirality of the composite material is possible with a more 
compliant dielectric matrix. According to this and to the case 
of a fabrication of the artificial composite structure with the 
polymer matrix the using of a polymer chiral composite can 
find broad area of the real applications [12]. 

The twisting of the helixes reflects the considerable changes 
only in case of piezoelectric properties of the material. 

By consideration of a packing variations of the helical 
inclusions one can have a supposition, that geometry of the 
helical inclusions as a shell width, packing density, quantity of 
the spiral turns, etc. can have a principal significance by the 

averaging of the electrical properties. As an example, by the 
increasing helix length and quantity of the spiral turns (in the 
case of polarization described above) one can received more 
evident piezoelectric effect in a chiral material, but the case of 
the increasing only shell width not improve the piezoelectric 
characteristics of the composite structure, of course a question 
of the shape optimization for this structure is more 
complicated and should be considered according to the 
optimization problem, [15]. 

The results of this work can be used for the designing of a 
metamaterial structure with a chiral properties, for a prediction 
of them mechanical and electrical response. 
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