Language and Retrieval Accuracy

One of the major challenges in the Information Retrieval field is handling the massive amount of information available to Internet users. Existing ranking techniques and strategies that govern the retrieval process fall short of expected accuracy. Often relevant documents are buried deep in the list of documents returned by the search engine. In order to improve retrieval accuracy we examine the issue of language effect on the retrieval process. Then, we propose a solution for a more biased, user-centric relevance for retrieved data. The results demonstrate that using indices based on variations of the same language enhances the accuracy of search engines for individual users.

Comprehensive Nonlinearity Simulation of Different Types and Modes of HEMTs with Respect to Biasing Conditions

A simple analytical model has been developed to optimize biasing conditions for obtaining maximum linearity among lattice-matched, pseudomorphic and metamorphic HEMT types as well as enhancement and depletion HEMT modes. A nonlinear current-voltage model has been simulated based on extracted data to study and select the most appropriate type and mode of HEMT in terms of a given gate-source biasing voltage within the device so as to employ the circuit for the highest possible output current or voltage linear swing. Simulation results can be used as a basis for the selection of optimum gate-source biasing voltage for a given type and mode of HEMT with regard to a circuit design. The consequences can also be a criterion for choosing the optimum type or mode of HEMT for a predetermined biasing condition.

Characterization of the Energy Band Diagram of Fabricated SnO2/CdS/CdTe Thin Film Solar Cells

A SnO2/CdS/CdTe heterojunction was fabricated by thermal evaporation technique. The fabricated cells were annealed at 573K for periods of 60, 120 and 180 minutes. The structural properties of the solar cells have been studied by using X-ray diffraction. Capacitance- voltage measurements were studied for the as-prepared and annealed cells at a frequency of 102 Hz. The capacitance- voltage measurements indicated that these cells are abrupt. The capacitance decreases with increasing annealing time. The zero bias depletion region width and the carrier concentration increased with increasing annealing time. The carrier transport mechanism for the CdS/CdTe heterojunction in dark is tunneling recombination. The ideality factor is 1.56 and the reverse bias saturation current is 9.6×10-10A. The energy band lineup for the n- CdS/p-CdTe heterojunction was investigated using current - voltage and capacitance - voltage characteristics.

Bias Stability of a-IGZO TFT and a new Shift-Register Design Suitable for a-IGZO TFT

We have fabricated a-IGZO TFT and investigated the stability under positive DC and AC bias stress. The threshold voltage of a-IGZO TFT shifts positively under those biases, and that reduces on-current. For this reason, conventional shift-register circuit employing TFTs which stressed by positive bias will be unstable, may do not work properly. We have designed a new 6-transistor shift-register, which has less transistors than prior circuits. The TFTs of the proposed shift-register are not suffering from positive DC or AC stress, mainly kept unbiased. Despite the compact design, the stable output signal was verified through the SPICE simulation even under RC delay of clock signal.

An Investigation on the Accuracy of Nonlinear Static Procedures for Seismic Evaluation of Buckling-restrained Braced Frames

Presented herein is an assessment of current nonlinear static procedures (NSPs) for seismic evaluation of bucklingrestrained braced frames (BRBFs) which have become a favorable lateral-force resisting system for earthquake resistant buildings. The bias and accuracy of modal, improved modal pushover analysis (MPA, IMPA) and mass proportional pushover (MPP) procedures are comparatively investigated when they are applied to BRBF buildings subjected to two sets of strong ground motions. The assessment is based on a comparison of seismic displacement demands such as target roof displacements, peak floor/roof displacements and inter-story drifts. The NSP estimates are compared to 'exact' results from nonlinear response history analysis (NLRHA). The response statistics presented show that the MPP procedure tends to significantly overestimate seismic demands of lower stories of tall buildings considered in this study while MPA and IMPA procedures provide reasonably accurate results in estimating maximum inter-story drift over all stories of studied BRBF systems.

Detection of Bias in GPS satellites- Measurements for Enhanced Measurement Integrity

In this paper, the detection of a fault in the Global Positioning System (GPS) measurement is addressed. The class of faults considered is a bias in the GPS pseudorange measurements. This bias is modeled as an unknown constant. The fault could be the result of a receiver fault or signal fault such as multipath error. A bias bank is constructed based on set of possible fault hypotheses. Initially, there is equal probability of occurrence for any of the biases in the bank. Subsequently, as the measurements are processed, the probability of occurrence for each of the biases is sequentially updated. The fault with a probability approaching unity will be declared as the current fault in the GPS measurement. The residual formed from the GPS and Inertial Measurement Unit (IMU) measurements is used to update the probability of each fault. Results will be presented to show the performance of the presented algorithm.

A Novel Logarithmic Current-Controlled Current Amplifier (LCCA)

A new OTA-based logarithmic-control variable gain current amplifier (LCCA) is presented. It consists of two Operational Transconductance Amplifier (OTA) and two PMOS transistors biased in weak inversion region. The circuit operates from 0.6V DC power supply and consumes 0.6 μW. The linear-dB controllable output range is 43 dB with maximum error less than 0.5dB. The functionality of the proposed design was confirmed using HSPICE in 0.35μm CMOS process technology.

Off-State Leakage Power Reduction by Automatic Monitoring and Control System

This paper propose a new circuit design which monitor total leakage current during standby mode and generates the optimal reverse body bias voltage, by using the adaptive body bias (ABB) technique to compensate die-to-die parameter variations. Design details of power monitor are examined using simulation framework in 65nm and 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 10 μW for 32nm technology and about 12 μW for 65nm technology at the same power supply voltage as the core power supply. Moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop.

A Testbed for the Experiments Performed in Missing Value Treatments

The occurrence of missing values in database is a serious problem for Data Mining tasks, responsible for degrading data quality and accuracy of analyses. In this context, the area has shown a lack of standardization for experiments to treat missing values, introducing difficulties to the evaluation process among different researches due to the absence in the use of common parameters. This paper proposes a testbed intended to facilitate the experiments implementation and provide unbiased parameters using available datasets and suited performance metrics in order to optimize the evaluation and comparison between the state of art missing values treatments.

Static Single Point Positioning Using The Extended Kalman Filter

Global Positioning System (GPS) technology is widely used today in the areas of geodesy and topography as well as in aeronautics mainly for military purposes. Due to the military usage of GPS, full access and use of this technology is being denied to the civilian user who must then work with a less accurate version. In this paper we focus on the estimation of the receiver coordinates ( X, Y, Z ) and its clock bias ( δtr ) of a fixed point based on pseudorange measurements of a single GPS receiver. Utilizing the instantaneous coordinates of just 4 satellites and their clock offsets, by taking into account the atmospheric delays, we are able to derive a set of pseudorange equations. The estimation of the four unknowns ( X, Y, Z , δtr ) is achieved by introducing an extended Kalman filter that processes, off-line, all the data collected from the receiver. Higher performance of position accuracy is attained by appropriate tuning of the filter noise parameters and by including other forms of biases.

Comparison of Imputation Techniques for Efficient Prediction of Software Fault Proneness in Classes

Missing data is a persistent problem in almost all areas of empirical research. The missing data must be treated very carefully, as data plays a fundamental role in every analysis. Improper treatment can distort the analysis or generate biased results. In this paper, we compare and contrast various imputation techniques on missing data sets and make an empirical evaluation of these methods so as to construct quality software models. Our empirical study is based on NASA-s two public dataset. KC4 and KC1. The actual data sets of 125 cases and 2107 cases respectively, without any missing values were considered. The data set is used to create Missing at Random (MAR) data Listwise Deletion(LD), Mean Substitution(MS), Interpolation, Regression with an error term and Expectation-Maximization (EM) approaches were used to compare the effects of the various techniques.

Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Resistor-less Current-mode Universal Biquad Filter Using CCTAs and Grounded Capacitors

This article presents a current-mode universal biquadratic filter. The proposed circuit can apparently provide standard functions of the biquad filter: low-pass, high-pass, bandpass, band-reject and all-pass functions. The circuit uses 4 current controlled transconductance amplifiers (CCTAs) and 2 grounded capacitors. In addition, the pole frequency and quality factor can be adjusted by electronic method by adjusting the bias currents of the CCTA. The proposed circuit uses only grounded capacitors without additional external resistors, the proposed circuit is considerably appropriate to further developing into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis.

Non-equilibrium Statistical Mechanics of a Driven Lattice Gas Model: Probability Function, FDT-violation, and Monte Carlo Simulations

The study of non-equilibrium systems has attracted increasing interest in recent years, mainly due to the lack of theoretical frameworks, unlike their equilibrium counterparts. Studying the steady state and/or simple systems is thus one of the main interests. Hence in this work we have focused our attention on the driven lattice gas model (DLG model) consisting of interacting particles subject to an external field E. The dynamics of the system are given by hopping of particles to nearby empty sites with rates biased for jumps in the direction of E. Having used small two dimensional systems of DLG model, the stochastic properties at nonequilibrium steady state were analytically studied. To understand the non-equilibrium phenomena, we have applied the analytic approach via master equation to calculate probability function and analyze violation of detailed balance in term of the fluctuation-dissipation theorem. Monte Carlo simulations have been performed to validate the analytic results.

The Female Beauty Myth Fostered by the Mass Media

This paper starts with a critical view of beautiful female images in the mass media being frequently generated by a stereotypical Korean concept of beauty. Several female beauty myths have evolved in Korea during the present decade. Nearly all of them have formed due to a deeply-ingrained androcentric ideology which objectifies women. Mass media causes the public to hold a distorted concept about female beauty. There is a huge gap between women in reality and representative women in the mass media. It is essential to have an unbiased perception of female images presented in the mass media. Due to cosmetic advertisements projecting contemporary images of female beauty to promote products, cosmetics images will be examined in regard to female beauty myths portrayed by the mass media. This paper will analyze features of female beauty myths in Korea and their intrinsic characteristics.

Ratio Type Estimators of the Population Mean Based on Ranked Set Sampling

Ranked set sampling (RSS) was first suggested to increase the efficiency of the population mean. It has been shown that this method is highly beneficial to the estimation based on simple random sampling (SRS). There has been considerable development and many modifications were done on this method. When a concomitant variable is available, ratio estimation based on ranked set sampling was proposed. This ratio estimator is more efficient than that based on SRS. In this paper some ratio type estimators of the population mean based on RSS are suggested. These estimators are found to be more efficient than the estimators of similar form using simple random sample.

Feasibility of Integrating Heating Valve Drivers with KNX-standard for Performing Dynamic Hydraulic Balance in Domestic Buildings

The increasing demand for sufficient and clean energy forces industrial and service companies to align their strategies towards efficient consumption. This trend refers also to the residential building sector. There, large amounts of energy consumption are caused by house and facility heating. Many of the operated hot water heating systems lack hydraulic balanced working conditions for heat distribution and –transmission and lead to inefficient heating. Through hydraulic balancing of heating systems, significant energy savings for primary and secondary energy can be achieved. This paper addresses the use of KNX-technology (Smart Buildings) in residential buildings to ensure a dynamic adaption of hydraulic system's performance, in order to increase the heating system's efficiency. In this paper, the procedure of heating system segmentation into hydraulically independent units (meshes) is presented. Within these meshes, the heating valve are addressed and controlled by a central facility server. Feasibility criteria towards such drivers will be named. The dynamic hydraulic balance is achieved by positioning these valves according to heating loads, that are generated from the temperature settings in the corresponding rooms. The energetic advantages of single room heating control procedures, based on the application FacilityManager, is presented.

Low Voltage Squarer Using Floating Gate MOSFETs

A new low-voltage floating gate MOSFET (FGMOS) based squarer using square law characteristic of the FGMOS is proposed in this paper. The major advantages of the squarer are simplicity, rail-to-rail input dynamic range, low total harmonic distortion, and low power consumption. The proposed circuit is biased without body effect. The circuit is designed and simulated using SPICE in 0.25μm CMOS technology. The squarer is operated at the supply voltages of ±0.75V . The total harmonic distortion (THD) for the input signal 0.75Vpp at 25 KHz, and maximum power consumption were found to be less than 1% and 319μW respectively.

An Efficient VLSI Design Approach to Reduce Static Power using Variable Body Biasing

In CMOS integrated circuit design there is a trade-off between static power consumption and technology scaling. Recently, the power density has increased due to combination of higher clock speeds, greater functional integration, and smaller process geometries. As a result static power consumption is becoming more dominant. This is a challenge for the circuit designers. However, the designers do have a few methods which they can use to reduce this static power consumption. But all of these methods have some drawbacks. In order to achieve lower static power consumption, one has to sacrifice design area and circuit performance. In this paper, we propose a new method to reduce static power in the CMOS VLSI circuit using Variable Body Biasing technique without being penalized in area requirement and circuit performance.

Scenario Recognition in Modern Building Automation

Modern building automation needs to deal with very different types of demands, depending on the use of a building and the persons acting in it. To meet the requirements of situation awareness in modern building automation, scenario recognition becomes more and more important in order to detect sequences of events and to react to them properly. We present two concepts of scenario recognition and their implementation, one based on predefined templates and the other applying an unsupervised learning algorithm using statistical methods. Implemented applications will be described and their advantages and disadvantages will be outlined.