Feasibility of Integrating Heating Valve Drivers with KNX-standard for Performing Dynamic Hydraulic Balance in Domestic Buildings

The increasing demand for sufficient and clean energy forces industrial and service companies to align their strategies towards efficient consumption. This trend refers also to the residential building sector. There, large amounts of energy consumption are caused by house and facility heating. Many of the operated hot water heating systems lack hydraulic balanced working conditions for heat distribution and –transmission and lead to inefficient heating. Through hydraulic balancing of heating systems, significant energy savings for primary and secondary energy can be achieved. This paper addresses the use of KNX-technology (Smart Buildings) in residential buildings to ensure a dynamic adaption of hydraulic system's performance, in order to increase the heating system's efficiency. In this paper, the procedure of heating system segmentation into hydraulically independent units (meshes) is presented. Within these meshes, the heating valve are addressed and controlled by a central facility server. Feasibility criteria towards such drivers will be named. The dynamic hydraulic balance is achieved by positioning these valves according to heating loads, that are generated from the temperature settings in the corresponding rooms. The energetic advantages of single room heating control procedures, based on the application FacilityManager, is presented.




References:
[1] X. Baopin, F. Lin and D. Hongfa, "Field investigation on consumer
behavior and hydraulic performance of a district heating system in
Tianjin, China." Building and Environment, vol 44, 2009, pp. 249-259.
[2] German Department of Justice, Verordnung ├╝ber energiesparenden
Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden
(Energieeinsparverordnung - EnEV.), 2009.
[3] C. Felsmann and R. Hirschberg, Das Rohrnetz in Heizungsanlagen: eine
Analyse des Teillastverhaltens und der Effizienz von Rohrnetzen. VDIVerlag D├╝sseldorf, 2007.
[4] N. Fumo, J.M. Pedro and L.M. Chamra, "Energy and economic evaluation of cooling, heating and power systems based on primary energy" Applied Thermal Engineering, vol. 29, 2009, pp. 2665-2671.
[5] GIRA (edt.), "Instabus EIB System, Tastsensor 2plus 2-/5fach mit
Beschriftungsfeld", Giersiepen, technical documentation, 2006.
[6] G. Guzek, Zur Energieeinsparung in Heizungsanlagen durch den
hydraulischen Abgleich., Dresden, TUDpress, 2010.
[7] D.Szendrei, ÔÇ×Machbarkeitsstudie des hydraulischen Abgleichs von
Heizungsanlagen mittels thermischer Stellantriebe in Smart Homes unter
Annahme gebäudespezifischer Nutzerprofile", University Of Applied
Sciences Zwickau, 2010, to be published.
[8] T. Teich, M. Zimmermann, S. Franke, F. Jahn and M. Schrader,
ÔÇ×Intelligent Building Automation", ISRST International Conference on
Automation, Robotics and Control Systems. Orlando, Florida, 2010, pp. 53-57.
[9] Theodor Heimeier Metallwerk GmbH, ÔÇ×EMO EIB Elektromotorischer
Stellantrieb für den Direktanschluss an den Europäischen
Installationsbus", Erwitte, technical documentation, 2010.
[10] R. Yao and K. Steemers, "A method of formulating energy load profile
for domestic buildings in the UK" Energy and Buildings, vol. 37, 2005,
pp. 663-671.
[11] J. Seifert, Ein Beitrag zur Einschätzung der energetischen und
exergetischen Einsparpotentiale von Regelverfahren in der
Heizungstechnik, TUDpress, Dresden, 2009.
[12] Y. Zou, Unstetige Wärmeversorgung im Mehrfamilienhaus,
Universitätsverlag Karlsruhe, 2008.