Comprehensive Nonlinearity Simulation of Different Types and Modes of HEMTs with Respect to Biasing Conditions

A simple analytical model has been developed to optimize biasing conditions for obtaining maximum linearity among lattice-matched, pseudomorphic and metamorphic HEMT types as well as enhancement and depletion HEMT modes. A nonlinear current-voltage model has been simulated based on extracted data to study and select the most appropriate type and mode of HEMT in terms of a given gate-source biasing voltage within the device so as to employ the circuit for the highest possible output current or voltage linear swing. Simulation results can be used as a basis for the selection of optimum gate-source biasing voltage for a given type and mode of HEMT with regard to a circuit design. The consequences can also be a criterion for choosing the optimum type or mode of HEMT for a predetermined biasing condition.




References:
[1] S. T. Sheppard, K. Doverpike, W. L. Pribble, S. T. Allen, and J. W.
Palmour, "High power microwave GaN/AlGaN HEMTs on silicon
carbide," IEEE Electron Device Lett., Vol. 20, no. 4, pp. 161-163, Apr.
1999.
[2] V. Tilak, B. Green, V. Kaper, H. Kim, T. Prunty, J. Smart, J. Shealy, and
L. Eastman, "Influence of barrier thickness on the high-power
performance of AlGaN/GaN HEMTs, " IEEE Electron Device Lett.,
Vol. 22, no. 11, pp. 504-506, Nov. 2001.
[3] K. H. G. Duh, P. C. Chao, S. M. J. Liu, P. Ho, M. Y. Kao, and J. M.
Ballingall, "A supper low-w-noise 0.1 ╬╝m T-gate InAlAs/InGaAs/InP
HEMT," IEEE Microwave Guided Wave Lett., Vol. 1, pp. 114-116,
May 1991.
[4] P. M. Smith, S. J. Liu, M. Y. Kao, P.Ho, S. C. Wang, K. H. G. Duh, S. T.
Fu, and P. C. Chao, "Wide-band high-efficiency InP-based power
HEMT with 600 GHz fmax," IEEE Microwave Guided Wave Lett., Vol.
5, pp. 230-232, July 1995.
[5] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T.Ogura, and
H. Ohashi, "High breakdown voltage AlGaN-GaN power-HEMT
design and high current density switching behavior,"IEEE Trans.
Electron Devices, Vol. 50, no. 12, pp. 2528-2531, Dec. 2003.
[6] M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. S.
Shur, and H. Park, "Enhancement and depletion mode GaN/AlGaN
heterostructure field effect transistors ," Appl. Phys. Lett., Vol. 68, no.
4, pp. 514-516, Jan. 1996.
[7] A. Mahajan, P. Fay, M. Arafa, and I. Adesia, "Integration of
InAlAs/InGaAs/InP enhancement-and depletion-mode high electron
mobility transistors for high-speed circuit applications," IEEE Trans.
Electron. Devices, Vol. 45, no. 1, pp. 0018-9383, Jan. 1998.
[8] J. S. Moon et al., "Submicron enhancement-mode AlGaN/GaN HEMTs"
in proc. 60th Device Research Conf., Santa Barba, CA, 2002, pp. 23-25.
[9] Y. Yamashita, A. Endoh, K. Shinohara, M. Higashiwaki, K. Hikosaka,
T. Mimura, S. Hiyamizu and T. Matsui, "Ultra-short 25-nm-gate latticematched
InAlAs/InGaAs HEMTs within the range of 400GHz cut-off
frequency," IEEE Electron. Dev. Lett., Vol. 22, pp. 367-369, Aug. 2001.
[10] L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, "50-
nm self-aligne-gate pseudomorphic AlInAs/GaInAs high-electron
mobility transistors" IEEE Trans. Electron Device, Vol. 39, pp. 2007-
2014, Sept. 1992.
[11] Y. C. Lin, E. Y. Chang, G. J. Chen, H. M. Lee, G. W. Huang, D. Biswas,
and C. Y. Chang, "InGaP/InGaAs PHEMT with high IP3 for low noise
applications," Electron. Lett., Vol. 40, no. 12, pp. 777-778, Jun. 2004.
[12] K. H. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y.
Chen, and W. C. Liu, "Improved tempreture-dependent performances
of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high
electron mobility transistor (DC-PHEMT)," IEEE Trans. Electron.
Devices, Vol. 49, no. 10, pp. 1687-1693, Oct. 2002.
[13] C. S. Whelan, P. F. Marsh, W. E. Hoke, and T. E. Kazior, "GaAs
metamorphic HEMT : the ideal candidate for high performance,
millimeter wave low noise and power applications," GaAs
Manufacturing Technology Conference, Washington, USA, pp. 237-240,
May 1-4. 2000.
[14] P. C. Chao, K. C. Hwang, D. W. Tu, J. S. M. Liu, O. Tang, and K.
Nichols, "Very high efficiency and low cost power metamorphic
HEMT MMIC technology," GaAs Manufacturing Technology
Conference, Washington, USA, pp. 57-60, May 1-4. 2000.
[15] M. Chertouk, F. Benkhelifa, M. Damman, M. Walther, K. Kohler, and
G. Weimann, "Metamorphic InAlAs/InGaAs MMIC technology on
GaAs substrate from promise to reality," GaAs Manufacturing
Technology Conference, Washington, USA, pp. 233-236, May 1-4.
2000.
[16] M. Miller ,M.Golio, B. Bechwith, E. Arnold, D. Halchin, S. Ageno, S.
Dorn, " Choosing an optimum large signal model for GaAs MESFETs
AND HEMTs " ,IEEE MTT-S 1990 .
[17] I. Angelov, H. Zirath, and N. Rorsman, "A New Empirical Non-linear
Model for HEMT and MESFET Devices,"IEEE Trans. on MTT, Vol.
40, 1992.
[18] Takashi Aigo, Mitsuhiko Goto, Yasumitsu Ohta, Aiji Jono, Akiyoshi
Tachikawa, and Akihiro Moritani, "Threshold voltage uniform and
characterization of microwave perfornance for GaAs/AlGaAs high
electron mobility trasistors grown on Si substrate ",IEEE Trans.
Electron. Devices. Vol. 43, no. 4, April. 1996.
[19] T. Aigo, M. Goto, Y. Ohta, A. Jono, A. Tachikawa, and A. Moritani,
"Threshold voltage uniformity and characterization of microwave
performance for GaAs/AlGaAs high electron-mobility transistors
grown on Si substrates," IEEE Trans. Electron Device, Vol. 43, no. 4,
Apr. 1996.
[20] F. Benkhelifa, M. Chertouk, M. Dammann, H. Massler, M. Walther, G.
Weinmann, "High performance metamorphic HEMT with 0.25
╬╝mrefractory metal gate on 4 GaAs substrate," GaAs Manufacturing
Technology Conference, Washington, USA, 2001.
[21] R. Khanna, L. Stafford, L. F. Voss, S. J. Pearton, H. T. Wang, T.
Anderson, S-C. Hung, and F. Ren, "Aging and stability of GaN high
electron mobility transistors and light-emitting diodes with TiB2- and
Ir-based contacts," IEEE Trans. Device and Materials Reliability, Vol.
8, no. 2, Jun. 2008.
[22] V. Kumar, D. H. Kim, A. Basu, and I. Adesia, "0.25╬╝m self-aligned
AlGaN/GaN high electron mobility transistors" IEEE Electron Device
Lett., Vol. 29, no. 1, Jan. 2008.
[23] M. Damman et al , "Reliability and degradation mechanism of
AlGaN/GaN HEMTs for next generation mobile communication
systems" Microelectronics Reliability, Vol. 49, pp. 474-477, 2009.