Intelligent Earthquake Prediction System Based On Neural Network

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

A Systemic Maturity Model

Maturity models, used descriptively to explain changes in reality or normatively to guide managers to make interventions to make organizations more effective and efficient, are based on the principles of statistical quality control and PDCA continuous improvement (Plan, Do, Check, Act). Some frameworks developed over the concept of maturity models include COBIT, CMM, and ITIL. This paper presents some limitations of traditional maturity models, most of them related to the mechanistic and reductionist principles over which those models are built. As systems theory helps the understanding of the dynamics of organizations and organizational change, the development of a systemic maturity model can help to overcome some of those limitations. This document proposes a systemic maturity model, based on a systemic conceptualization of organizations, focused on the study of the functioning of the parties, the relationships among them, and their behavior as a whole. The concept of maturity from the system theory perspective is conceptually defined as an emergent property of the organization, which arises as a result of the degree of alignment and integration of their processes. This concept is operationalized through a systemic function that measures the maturity of organizations, and finally validated by the measuring of maturity in some organizations. For its operationalization and validation, the model was applied to measure the maturity of organizational Governance, Risk and Compliance (GRC) processes.

Lean Environmental Management Integration System (LEMIS) Framework Development

The Lean Environmental Management Integration System (LEMIS) framework development is integration between lean core element and ISO 14001. The curiosity on the relationship between continuous improvement and sustainability of lean implementation has influenced this study toward LEMIS. Characteristic of ISO 14001 standard clauses and core elements of lean principles are explored from past studies and literature reviews. Survey was carried out on ISO 14001 certified companies to examine continual improvement by implementing the ISO 14001 standard. The study found that there is a significant and positive relationship between Lean Principles: value, value stream, flow, pull and perfection with the ISO 14001 requirements. LEMIS is significant to support the continuous improvement and sustainability. The integration system can be implemented to any manufacturing company. It gives awareness on the importance on why organizations need to sustain its environmental management system. In the meantime, the lean principle can be adapted in order to streamline daily activities of the company. Throughout the study, it had proven that there is no sacrifice or trade-off between lean principles with ISO 14001 requirements. The framework developed in the study can be further simplified in the future, especially the method of crossing each sub requirements of ISO 14001 standard with the core elements of Lean principles in this study.

Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System

This paper proposes the designing direct adaptive neural controller to apply for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) neural adaptive controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are importance of this paper. The simulation results show the promising performance of the proposed controller.

Laser Beam Welding of Ti/Al Dissimilar Thin Sheets - A Literature Review

Dissimilar joining of Titanium and Aluminum thin sheets has potential applications in aerospace and automobile industry which can reduce weight and cost and improve strength, corrosion resistance and high temperature properties. However successful welding of Titanium/Aluminium sheets is of challenge due to differences in physical, chemical and metallurgical properties between the two. This paper describes research results of Laser Beam Welding (LBW) of Ti/Al thin sheets in which many researchers have recently performed and critically reviewed from different perspectives. Also some of notable works in the field of laser welding with changes in mechanical properties, crack propagation, diffusion behavior, chemical potential, interfacial reaction and the microstructure are reported.

The Effective of Classroom Management on Nurturing

The primary purpose of this paper is to explain the impact of successful classroom management on the academic achievements of students, the importance of positive relationship between teacher and students, among students, between teacher and parents. Effective communication plays an important role to encourage students study hard and learn materials which are covered by the teacher in the class. Friendly relationships among students other than their preferred friends help them to have team working and be socialized. In addition, a well-organized classroom arrangement enhances students learning. As the consequence of successful classroom management students should feel responsibility and need to feel it. The one who is responsible to provide a comfortable environment and help students learn is the manager of the classroom who is named Teacher.

Strategic Corporate Social Responsibility: Literature Review and Value Chain Activities Filter

In today’s era, it is no news that organizations should demonstrate honest conduct as well as ethical administration. Therefore, the concept of corporate social responsibility (subsequently CSR) has created its tag upon the company’s focal point as well as marketing communications, and will continue in the future. The importance of CSR has increased in the last decade, and this concept has attracted global attention. The notion of CSR has strategic significance for many organizations. However, businesses are not adapting the activities of CSR that benefit to all of its stakeholders (including society). The main reason is the practitioners are unfortunately unable to comprehend its importance; and therefore, the activities of the CSR are so detached from the business activities. Hence, it is required to develop an understanding that the activities of CSR are not only beneficial for the society but it also benefit to business. This paper focuses on the concept of strategic CSR, and develops a theoretical framework that will help practitioners to filter and chose the activities of CSR that are strategic in nature.

Effects of Specific Essential Oil Compounds on, Feed Intake, Milk Production, and Ruminal Environment in Dairy Cows during Heat Exposure

The objective of this study was to determine effect of dietary essential oil (EO) compounds, which contained cinnamaldehyde, eugenol, peppermint, coriander, cumin, lemongrass, and an organic carrier on feed intake, milk composition, and rumen fermentation of dairy cows during heat exposure. Thirty-two Holstein cows (days in milk= 60 ± 5) were assigned to one of two treatment groups: a Control and EO fed. The experiment lasted 28 days. Dry matter intake (DMI) was measured daily while and milk production was measured weekly. Our result showed that DMI and milk yield was decreased (P < 0.01) in control cows relative to EO cows. Furthermore, supplementation with EO was associated with a decrease in the molar proportion of propionate (P < 0.05) and increase (P < 0.05) in acetate to propionate ratio. In conclusion, EO supplementations in diets can be useful nutritional modification to alleviate for the decrease DMI and milk production during heat exposure in lactating dairy cows.

Biohydrogen Production from Starch Residues

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogendeficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Categories of Botnet: A Survey

Botnets are one of the most serious and widespread cyber threats. Today botnets have been facilitating many cybercrimes, especially financial, top secret thefts. Botnets can be available for lease in the market and are utilized by the cybercriminals to launch massive attacks like DDoS, click fraud, phishing attacks etc., Several large institutions, hospitals, banks, government organizations and many social networks such as twitter, facebook etc., became the target of the botmasters. Recently, noteworthy researches have been carried out to detect bot, C&C channels, botnet and botmasters. Using many sophisticated technologies, botmasters made botnet a titan of the cyber world. Innumerable challenges have been put forth by the botmasters to the researchers in the detection of botnet. In this paper we present a survey of different types of botnet C&C channels and also provide a comparison of various botnet categories. Finally we hope that our survey will create awareness for forthcoming botnet research endeavors.

Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil

Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity of stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%.

An Evaluation of Drivers in Implementing Sustainable Manufacturing in India: Using DEMATEL Approach

Due to growing concern about environmental and social consequences throughout the world, a need has been felt to incorporate sustainability concepts in conventional manufacturing. This paper is an attempt to identify and evaluate drivers in implementing sustainable manufacturing in Indian context. Nine possible drivers for successful implementation of sustainable manufacturing have been identified from extensive review. Further, Decision Making Trial and Evaluation Laboratory (DEMATEL) approach has been utilized to evaluate and categorize these identified drivers for implementing sustainable manufacturing in to the cause and effect groups. Five drivers (Societal Pressure and Public Concerns; Regulations and Government Policies; Top Management Involvement, Commitment and Support; Effective Strategies and Activities towards Socially Responsible Manufacturing and Market Trends) have been categorized into the cause group and four drivers (Holistic View in Manufacturing Systems; Supplier Participation; Building Sustainable culture in Organization; and Corporate Image and Benefits) have been categorized into the effect group. “Societal Pressure and Public Concerns” has been found the most critical driver and “Corporate Image and Benefits” as least critical or the most easily influenced driver to implementing sustainable manufacturing in Indian context. This paper may surely help practitioners in better understanding of these drivers and their priorities towards effective implementation of sustainable manufacturing.

Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

An Overview of Nano-Particles Effect on Mechanical Properties of Composites

Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP.

Papain Immobilized Polyurethane Film as Antimicrobial Food Package

Food contamination occurs during post process handling. This leads to spoilage and growth of pathogenic microorganisms in the food, thereby reducing its shelf life or spreading of food borne diseases. Several methods are tried and one of which is use of antimicrobial packaging. Here, papain, a protease enzyme, is covalently immobilized with the help of glutarldehyde on polyurethane and used as a food wrap to protect food from microbial contamination. Covalent immobilization of papain was achieved at a pH of 7.4; temperature of 4°C; glutaraldehyde concentration of 0.5%; incubation time of 24h; and 50mg of papain. The formation of -C=Nobserved in the Fourier transform infrared spectrum confirmed the immobilization of the enzyme on the polymer. Immobilized enzyme retained higher activity than the native free enzyme. The modified polyurethane showed better reduction of Staphylococcus aureus biofilm than bare polymer film (eight folds reduction in live colonies, two times reduction in protein and 6 times reduction in carbohydrates). The efficacy of this was studied by wrapping it over S. aureus contaminated cottage cheese (paneer) and cheese and stored at a temperature of 4°C for 7days. The modified film reduced the bacterial contamination by eight folds when compared to the bare film. FTIR also indicated reduction in lipids, sugars and proteins in the biofilm.

Grape Seed Extract in Prevention and Treatment of Liver Toxic Cirrhosis in Rats

The liver is the strongest regenerating organ of the organism, and even with 2/3 surgically removed, it can regenerate completely. Hence liver cirrhosis may only develop when the regenerating system is off. We present the results of a comparative study of structural and functional characteristics of rat liver tissue under the conditions of toxic liver cirrhosis development, induced by carbon tetrachloride, and its prevention/treatment by natural compounds with antioxidant and immune stimulating action. Studies were made on Wister rats, weighing 120~140 g. Grape seeds extracts, separately and in combination with well-known anticirrhotic drug ursodeoxycholic acid (Urdoxa), have demonstrated effectiveness in prevention of liver cirrhosis development and its treatment.

Identification of Conserved Domains and Motifs for GRF Gene Family

GRF, Growth regulating factor, genes encode a novel class of plant-specific transcription factors. The GRF proteins play a role in the regulation of cell numbers in young and growing tissues and may act as transcription activations in growth and development of plants. Identification of GRF genes and their expression are important in plants to performance of the growth and development of various organs. In this study, to better understanding the structural and functional differences of GRFs family, 45 GRF proteins sequences in A. thaliana, Z. mays, O. sativa, B. napus, B. rapa, H. vulgare and S. bicolor, have been collected and analyzed through bioinformatics data mining. As a result, in secondary structure of GRFs, the number of alpha helices was more than beta sheets and in all of them QLQ domains were completely in the biggest alpha helix. In all GRFs, QLQ and WRC domains were completely protected except in AtGRF9. These proteins have no trans-membrane domain and due to have nuclear localization signals act in nuclear and they are component of unstable proteins in the test tube.

Web-Content Analysis of the Major Spanish Tourist Destinations Evaluation by Russian Tourists

In the second decade of the XXI century the role of tourism destination attractiveness is becoming increasingly important for destination management. Competition in tourism market moves from ordinary service quality to provision of unforgettable emotional experience for tourists. The main purpose of the present study is to identify the perception of the tourism destinations based on the number of factors related to its tourist attractiveness. The content analysis method was used to analyze the on-line tourist feedback data immensely available in Social Media and in travel related sites. The collected data made it possible to procure the information which is necessary to understand the perceived attractiveness of the destinations and key destination appeal factors that are important for Russian leisure travelers. Results of the present study demonstrate key attractiveness factors or destination ‘properties’ that were unveiled as the most important for Russian leisure tourists. The study targeted five main Spanish tourism destinations that initially were determined by in-depth interview with a number of Russian nationals who had visited Spain at least once. The research results can be useful for Spanish Tourism Organization Representation office in Russia as well as for the other national tourism organizations in order to promote their respective destinations for Russian travelers focusing on main attractiveness factors identified in this study.

Business Penetration through Print Media: A Review of Select Enablers

It’s an era of high competition, dynamism and complexities which have forced organizations to change dramatically due to rising customer expectations. Marketers are under constant pressure to deliver finest to their customers. With the advent of technology, marketers have identified latest advertising media options to reach out to target audience. But the conventional ways of print advertisements still holds a deeper penetration and coverage. Various researchers and practitioners have studied the area of print media advertising and have tried to identify and implement advertisement effectiveness enablers. The purpose of this paper is to suggest select enablers for print media in Indian context using an integrated approach of review of literature and investigative interviews with academicians and experts from the area of advertising.