The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

This paper illustrates the effect of nano Magnesium
Hydroxide (MH) loading on the thermal properties of Low Density
Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano
composite. Thermal studies were conducted, as it understanding is
vital for preliminary development of new polymeric systems.
Thermal analysis of nanocomposite was conducted using thermo
gravimetric analysis (TGA), and differential scanning calorimetry
(DSC). Major finding of TGA indicated two main stages of
degradation process found at (350 ± 25oC) and (480 ± 25oC)
respectively. Nano metal filler expressed better fire resistance as it
stand over high degree of temperature. Furthermore, DSC analysis
provided a stable glass temperature around 51 (±1oC) and captured
double melting point at 84 (±2oC) and 108 (±2oC). This binary
melting point reflects the modification of nano filler to the polymer
matrix forming melting crystals of folded and extended chain. The
percent crystallinity of the samples grew vividly with increasing filler
content. Overall, increasing the filler loading improved the
degradation temperature and weight loss evidently and a better
process and phase stability was captured in DSC.





References:
[1] H. Huang; M. Tian.; L. Liu.; W. Liang.; L. Zhang, Effect of Particle Size
on Flame Retardancy of Mg(OH)2-Filled Ethylene Vinyl Acetate
Copolymer Composites, Journal of Applied Polymer Science, Vol. 100,
4461– 4469 (2006)
[2] H. L. Ferna´ndez, A. Velasco, J. Chimenos, L. Cuesta, J. Espiell, F.
(2007). Thermal stability and flame retardancy of LDPE/EVA blends
filled with synthetic hydromagnesite /aluminium hydroxide/
montmorillonite and magnesium hydroxide/aluminium hydroxide /
montmorillonite mixtures, Polymer Degradation and Stability. 92: 1082-
1087.
[3] L. Qiu, R. Xie, P. Ding, B. Qu, “Preparation and characterization of
Mg(OH)2 nanoparticles and flame-retardant property of its
nanocomposites with EVA”, Anhui, PR China, 2003 pp 391–395
[4] Li, Y.; Qiao, H. Chin Beijing University Chem Tech 2003, 29(3), 48.
[5] Shigeo, M.; Takeshi, I.; Hithoshi, A. J Appl Polym Sci 1980, 25,415.
[6] M.A. Ca´rdenas, D. Garcı´a-Lo´ pez, I. Gobernado-Mitre, J.C. Merino,
J.M. Pastor, J. de D. Martı´nez, J. Barbeta, D. Calveras, “Mechanical
and fire retardant properties of EVA/clay/ATH nanocomposites – Effect
of particle size and surface treatment of ATH filler”, Valladolid, Spain,
2008 pp 2032–2037
[7] X. Zhang, F. Guo, J. Chen, G. Wang, H. Liu, “Investigation of
interfacial modification for flame retardant ethylene vinyl acetate
copolymer/alumina trihydrate nanocomposites”, Beijing People’s
Republic of China, 2005 pp 411- 418
[8] Haurie, L. Ferna´ndez, A. Velasco, J. Chimenos, J. Lopez Cuesta, J.
Espiell, F. (2006). Synthetic hydromagnesite as flame retardant.
Evaluation of the flame behaviour in a polyethylene matrix, Polymer
Degradation and Stability. 91: 989-994.
[9] Marchal, A, Deobel R, Le Bras M, Leroy J-M and price D (1994). Effect
of intumescence on polymer degradation. Polymer Degdation and
Stability 44:.263- 272.
[10] Mouzheng, F. Baojun. (2004). Synergistic flame retardant mechanism of
fumed silica in ethylene-vinyl acetate / magnesium hydroxide blends.
Polymer Degradation and Stability.85: 633-639.
[11] Delfosse, L., Baillet . (1989). Combustion of ethylene-Vinyl Acetate
[12] Copolymer Filled with Aluminium and Magnesium Hydroxides.
Polymer Degradation and Stability. 23: 337-347.
[13] Maurin, M.B., Pang and Hussain (1992). Thermogravimetric analysis of
ethylene-vinyl acetate copolymer with dynamic heating rates.
Thermochim Acta 209: 203-207.
[14] Maurin, M.B., Dittert L.W and Hussain (1991). Thermogravimetric
analysis of ethylene-vinyl acetate copolymers with Fourier transform
infrared analysis of the pyrolysis products. Thermochim Acta 186: 97-
102.
[15] Tai, C. M.; Li, R. K. Y. J Appl Polym Sci 2001, 80, 2718.
[16] Carpentier, F. Bourbigot, S. Le Bras, M. Delobel, R. Foulon, M. Polym
Degrad Stab 2000, 69, 83.
[17] Cross, M. S. Cusack, P. A. Hornsby, P. R. Polym Degrad Stab 2003, 79,
309.
[18] Yeh, J. Yang, H. Huang, S. Polymer Degrad Stab 1995, 50, 229.
[19] Genovese, A. Shanks, R.A. (2007). Structural and thermal interpretation
of the synergy and interactions between the fire retardants magnesium
hydroxide and zinc borate, Polymer Degradation and Stability. 92: 2-13.
[20] Rothon, R.N. Hornsby, P.R. (1996). Flame retardant effect of
magnesium hydroxide, Polymer.Degradation and.Stablity., 54 (2-
3):.383-385.
[21] J. A. Dean: ‘The Analytical Chemistry Handbook’, 15.1–15.5; 1995,
New York. McGraw Hill.
[22] E. Pungor: ‘A Practical Guide to Instrumental Analysis’, 181–191; 1995,
CRC Press, Boca Raton, Florida.
[23] D. A. Skoog, F. J. Holler and T.A. Nieman: ‘Principles of Instrumental
Analysis’, 5th edn, 905–908; 1998, Saunders, Philadelphia, PA, USA.
[24] M. J. Starink: Intl Mater. Rev., 2004, 49, 191-226.