A Method to Improve Test Process in Federal Enterprise Architecture Framework Using ISTQB Framework

Enterprise Architecture (EA) is a framework for description, coordination and alignment of all activities across the organization in order to achieve strategic goals using ICT enablers. A number of EA-compatible frameworks have been developed. We, in this paper, mainly focus on Federal Enterprise Architecture Framework (FEAF) since its reference models are plentiful. Among these models we are interested here in its business reference model (BRM). The test process is one important subject of an EA project which is to somewhat overlooked. This lack of attention may cause drawbacks or even failure of an enterprise architecture project. To address this issue we intend to use International Software Testing Qualification Board (ISTQB) framework and standard test suites to present a method to improve EA testing process. The main challenge is how to communicate between the concepts of EA and ISTQB. In this paper, we propose a method for integrating these concepts.

An Interactive e-Learning Management System (e-LMS): A Solution to Tanzanian Secondary Schools' Education

Information and Communications Technologies (ICT) has been integrated in education in many developing and developed countries alike, but the use of ICT in Tanzanian schools is dismal. Many Tanzanian secondary schools have no computers. The few schools with computers use them primarily for secretarial services and computer literacy training. The Tanzanian education system at other levels like secondary school level has to undergo substantial transformation, underscored by the growing application of new information and communication technology. This paper presents the e-readiness survey result from secondary schools in Tanzania. The paper also suggests how Tanzania can make use of the few present ICT resources to support and improve teaching and learning functions to improve performance and acquisition of knowledge by using e-Learning Management System (e-LMS).

Principal Role and School Structure

This main purpose of the study reported here was to investigate the extent to which the form of school governance (particularly decision-making) had an impact upon the effectiveness of the school with reference to parental involvement, planning and budgeting, professional development of teachers, school facilities and resources, and student outcomes. Particular attention was given to decision-making within the governance arrangements. The study was based on four case studies of high schools in New South Wales, Australia including one government school, one independent Christian community school, one independent Catholic school, and one Catholic systemic school. The focus of the research was principals, teachers, parents, and students of four schools with varying governance structures. To gain a greater insight into the issues, the researchers collected information by questionnaire, semi-structured interview, and review of school key documents. This study found that it was not so much structure but the centrality of the school Principal and the way that the Principal perceived his/her roles in relation to others that impacted most on school governance.

Rational Points on Elliptic Curves 2 3 3y = x + a inF , where p 5(mod 6) is Prime

In this work, we consider the rational points on elliptic curves over finite fields Fp where p ≡ 5 (mod 6). We obtain results on the number of points on an elliptic curve y2 ≡ x3 + a3(mod p), where p ≡ 5 (mod 6) is prime. We give some results concerning the sum of the abscissae of these points. A similar case where p ≡ 1 (mod 6) is considered in [5]. The main difference between two cases is that when p ≡ 5 (mod 6), all elements of Fp are cubic residues.

Semi Classical Three-Valley Monte Carlo Simulation Analysis of Steady-State and Transient Electron Transport within Bulk Ga0.38In0.62P

to simulate the phenomenon of electronic transport in semiconductors, we try to adapt a numerical method, often and most frequently it’s that of Monte Carlo. In our work, we applied this method in the case of a ternary alloy semiconductor GaInP in its cubic form; The Calculations are made using a non-parabolic effective-mass energy band model. We consider a band of conduction to three valleys (ΓLX), major of the scattering mechanisms are taken into account in this modeling, as the interactions with the acoustic phonons (elastic collisions) and optics (inelastic collisions). The polar optical phonons cause anisotropic collisions, intra-valleys, very probable in the III-V semiconductors. Other optical phonons, no polar, allow transitions inter-valleys. Initially, we present the full results obtained by the simulation of Monte Carlo in GaInP in stationary regime. We consider thereafter the effects related to the application of an electric field varying according to time, we thus study the transient phenomenon which make their appearance in ternary material

Ecotourism, Expansion, alongside with Dominant Function of Khark (kharg) and Kharko Islands

In recent decade's tourism industry is one of main reasons of the social and economical development for many countries; so these countries try to gain more portion of it for themselves. The excessive natural and cultural touristy potentialities in Iran made this country to be one of the most attractive sightseeing areas, although; Iran has got the lowest rate of tourists. Khark Island is about 32 km. It is a beautiful coral reef coast; about 98% of oil export has been done through this place. The ecotourism potentialities of Khark and Kharko Islands (about 3.7km far from Khark) are the reason to consider ecotourism and the main activity in these islands which is exporting oil at the same time. This article refers to way of measuring the geographical coordination of the place, and the potentialities, ecotourism attraction of the islands and introduces some ideas in order to expand tourism in the islands.

Experimental Determination of Reactions of Wind-Resistant Support of Circular Stacks in Various Configurations

Higher capacities of power plants together with increased awareness on environmental considerations have led to taller height of stacks. It is seen that strong wind can result in falling of stacks. So, aerodynamic consideration of stacks is very important in order to save the falling of stacks. One stack is not enough in industries and power sectors and two or three stacks are required for proper operation of the unit. It is very important to arrange the stacks in proper way to resist their downfall. The present experimental study concentrates on the mutual effect of three nearby stacks on each other at three different arrangements, viz. linear, side-by-side and triangular. The experiments find out the directions of resultant forces acting on the stacks in different configurations so that proper arrangement of supports can be made with respect to the wind directionality obtained from local meteorological data. One can also easily ascertain which stack is more vulnerable to wind in comparison to the others for a particular configuration. Thus, this study is important in studying the effect of wind force on three stacks in different arrangements and is very helpful in placing the supports in proper places in order to avoid failing of stack-like structures due to wind.

Study on Rupture of Tube Type Crash Energy Absorber using Finite Element Method

The aim of this paper is to confirm the effect of key design parameters, the punch radius and punch angle, on rupture of the expansion tube using a finite element analysis with a ductile damage model. The results of the finite element analysis indicated that the expansion ratio of the tube was mainly affected by the radius of the punch. However, the rupture was more affected by the punch angle than the radius of the punch. The existence of a specific punch angle, at which rupture did not occur, even if the radius of the punch was increased, was found.

Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization

This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.

Power Frequency Magnetic Field Survey in Indoor Power Distribution Substation in Egypt

In our modern society electricity is vital to our health, safety, comfort and well-being. While our daily use of electricity is often taken for granted, public concern has arisen about potential adverse health effects from electric and magnetic – electromagnetic – fields (EMFs) produced by our use of electricity. This paper aims to compare between the measured magnetic field values and the simulated models for the indoor medium to low voltage (MV/LV) distribution substations. To calculate the magnetic flux density in the substations, interactive software SUBCALC is used which is based on closed form solution of the Biot-Savart law with 3D conductor model. The comparison between the measured values and the simulated models was acceptable. However there were some discrepancies, as expected, may be due to the current variation during measurements.

Oil Palm Empty Fruit Bunch as a New Organic Filler for Electrical Tree Inhibition

The use of synthetic retardants in polymeric insulated cables is not uncommon in the high voltage engineering to study electrical treeing phenomenon. However few studies on organic materials for the same investigation have been carried. .This paper describes the study on the effects of Oil Palm Empty Fruit Bunch (OPEFB) microfiller on the tree initiation and propagation in silicone rubber with different weight percentages (wt %) of filler to insulation bulk material. The weight percentages used were 0 wt % and 1 wt % respectively. It was found that the OPEFB retards the propagation of the electrical treeing development. For tree inception study, the addition of 1(wt %) OPEFB has increase the tree inception voltage of silicone rubber. So, OPEFB is a potential retardant to the initiation and growth of electrical treeing occurring in polymeric materials for high voltage application. However more studies on the effects of physical and electrical properties of OPEFB as a tree retardant material are required.

Online Control of Knitted Fabric Quality: Loop Length Control

Circular knitting machine makes the fabric with more than two knitting tools. Variation of yarn tension between different knitting tools causes different loop length of stitches duration knitting process. In this research, a new intelligent method is applied to control loop length of stitches in various tools based on ideal shape of stitches and real angle of stitches direction while different loop length of stitches causes stitches deformation and deviation those of angle. To measure deviation of stitch direction against variation of tensions, image processing technique was applied to pictures of different fabrics with constant front light. After that, the rate of deformation is translated to needed compensation of loop length cam degree to cure stitches deformation. A fuzzy control algorithm was applied to loop length modification in knitting tools. The presented method was experienced for different knitted fabrics of various structures and yarns. The results show that presented method is useable for control of loop length variation between different knitting tools based on stitch deformation for various knitted fabrics with different fabric structures, densities and yarn types.

Reconfigurable Circularly Polarized Compact Short Backfire Antenna

In this research paper, a slotted coaxial line fed cross dipole excitation structure for short backfire antenna is proposed and developed to achieve reconfigurable circular polarization. The cross dipole, which is fed by the slotted coaxial line, consists of two orthogonal dipoles. The dipoles are mounted on the outer conductor of the coaxial line. A unique technique is developed to generate reconfigurable circular polarization using cross dipole configuration. The sub-reflector is supported by the feed line, thus requiring no extra support. The antenna is developed on elliptical ground plane with dielectric rim making antenna compact. It is demonstrated that cross dipole excited short backfire antenna can achieve voltage standing wave ratio (VSWR) bandwidth of 14.28% for 2:1 VSWR, axial ratio of 0.2 dB with axial ratio (≤ 3dB) bandwidth of 2.14% and a gain of more than 12 dBi. The experimental results for the designed antenna structure are in close agreement with computer simulations.

Pomelo Peel: Agricultural Waste for Biosorption of Cadmium Ions from Aqueous Solutions

The ability of pomelo peel, a natural biosorbent, to remove Cd(II) ions from aqueous solution by biosorption was investigated. The experiments were carried out by batch method at 25 °C. The influence of solution pH, initial cadmium ion concentrations and contact times were evaluated. Cadmium ion removal increased significantly as the pH of the solution increased from pH 1 to pH 5. At pH 5, the cadmium ion removal reached a maximum value. The equilibrium process was described well by the Langmuir isotherm model, with a maximum biosorption capacity of 21.83 mg/g. The biosorption was relatively quick, (approx. 20 min). Biosorption kinetics followed a pseudo-second-order model. The result showed that pomelo peel was effective as a biosorbent for removing cadmium ions from aqueous solution. It is a low cost material that shows potential to be applied in wastewater technology for remediation of heavy metal contamination.

Fuzzy Separation Bearing Control for Mobile Robots Formation

In this article we address the problem of mobile robot formation control. Indeed, the most work, in this domain, have studied extensively classical control for keeping a formation of mobile robots. In this work, we design an FLC (Fuzzy logic Controller) controller for separation and bearing control (SBC). Indeed, the leader mobile robot is controlled to follow an arbitrary reference path, and the follower mobile robot use the FSBC (Fuzzy Separation and Bearing Control) to keep constant relative distance and constant angle to the leader robot. The efficiency and simplicity of this control law has been proven by simulation on different situation.

Mathematical Modeling of Gas Turbine Blade Cooling

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

A New Approach for Classifying Large Number of Mixed Variables

The issue of classifying objects into one of predefined groups when the measured variables are mixed with different types of variables has been part of interest among statisticians in many years. Some methods for dealing with such situation have been introduced that include parametric, semi-parametric and nonparametric approaches. This paper attempts to discuss on a problem in classifying a data when the number of measured mixed variables is larger than the size of the sample. A propose idea that integrates a dimensionality reduction technique via principal component analysis and a discriminant function based on the location model is discussed. The study aims in offering practitioners another potential tool in a classification problem that is possible to be considered when the observed variables are mixed and too large.

Deicing and Corrosive Performances of Calcium Acetate Deicer Made from Bamboo-Vinegar

Calcium magnesium acetate (CMA) is environmentally benign deicing chemicals that can replace sodium chloride that is widely used on roads and highways at present for snow and ice control to provide safe driving conditions during winter. The price of CMA from petroleum-derived acetic acid is quite expensive. The bamboo vinegar is the by-product from bamboo charcoal production. The bamboo vinegar was used to prepare calcium acetate as raw materials, and its deicing and corrosive performances were studied in this paper. The results show that the freezing temperature of calcium acetate is lower than that of sodium chloride when they have same molar concentration, the deicing performance of calcium acetate is better than that of sodium chloride when they have same moles, while the deicing performance of sodium chloride is better than that of calcium acetate. The corrosion of sodium chloride on iron-nail and steel-nail is larger than that of calcium acetate whether they have same mass concentration or same molar concentration, and the corrosion of sodium chloride and calcium acetate on iron-nail is larger than that on steel-nail, and calcium acetate almost hasn't corrosion on steel-nail.

Nanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior

The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism and microstructural characteristic at different test condition was discussed extensively. At room temperature, relatively lower value of activation volume (AV) and higher value of strain rate sensitivity (SRS) suggests that new rate controlling mechanism accommodating plastic flow in the present nanocrystalline sample. The deformation behavior and the microstructural character of the present samples were discussed in details.

Investigation of Tool Temperature and Surface Quality in Hot Machining of Hard-to-Cut Materials

Production of hard-to-cut materials with uncoated carbide cutting tools in turning, not only cause tool life reduction but also, impairs the product surface roughness. In this paper, influence of hot machining method were studied and presented in two cases. Case1-Workpiece surface roughness quality with constant cutting parameter and 300 ºC initial workpiece surface temperature. Case 2- Tool temperature variation when cutting with two speeds 78.5 (m/min) and 51 (m/min). The workpiece material and tool used in this study were AISI 1060 steel (45HRC) and uncoated carbide TNNM 120408-SP10(SANDVIK Coromant) respectively. A gas flam heating source was used to preheating of the workpiece surface up to 300 ºC, causing reduction of yield stress about 15%. Results obtained experimentally, show that the method used can considerably improved surface quality of the workpiece.