Modified Montgomery for RSA Cryptosystem

Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular Multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.

A PSO-based SSSC Controller for Improvement of Transient Stability Performance

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

Optimal Controllers with Actuator Saturation for Nonlinear Structures

Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.

Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor (PMSM)

This paper presents a comparative study on two most popular control strategies for Permanent Magnet Synchronous Motor (PMSM) drives: field-oriented control (FOC) and direct torque control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Blockset that allows a complete representation of the power section (inverter and PMSM) and the control system. The simulation and evaluation of both control strategies are performed using actual parameters of Permanent Magnet Synchronous Motor fed by an IGBT PWM inverter.

The Impact of Process Parameters on the Output Characteristics of an LDMOS Device

In this paper, we have examined the effect of process parameter variation on the electrical characteristics of an LDMOS device. The rate of change in the electrical parameters such as cut off frequency, breakdown voltage and drain saturation current as a function of the process parameters is investigated

A New Version of Annotation Method with a XML-based Knowledge Base

Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websitexs defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a better and improved approach than previous [1] to annotate the texts of the websites depends on the knowledge base.

Evaluating New Service Development Performance Based on Multigranular Linguistic Assessment

The service sector continues to grow and the percentage of GDP accounted for by service industries keeps increasing. The growth and importance of service to an economy is not just a phenomenon of advanced economies, service is now a majority of the world gross domestic products. However, the performance evaluation process of new service development problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of new service development manipulates the heterogeneity integration processes and avoids the information loss effectively.

Simulation of Dam Break using Finite Volume Method

Today, numerical simulation is a powerful tool to solve various hydraulic engineering problems. The aim of this research is numerical solutions of shallow water equations using finite volume method for Simulations of dam break over wet and dry bed. In order to solve Riemann problem, Roe-s approximate solver is used. To evaluate numerical model, simulation was done in 1D and 2D states. In 1D state, two dam break test over dry bed (with and without friction) were studied. The results showed that Structural failure around the dam and damage to the downstream constructions in bed without friction is more than friction bed. In 2D state, two tests for wet and dry beds were done. Generally in wet bed case, waves are propagated to canal sides but in dry bed it is not significant. Therefore, damage to the storage facilities and agricultural lands in wet bed case is more than in dry bed.

Balanced Scorecard in SMEs – A Proposal for Small Gas Stations in Portugal

As current business environment is demanding a constant adaptation of companies, the planning and strategic management should be an ongoing and natural process in all kind of organizations. The use of management and monitoring strategic performance tools such as the Balanced Scorecard (BSC) have been popular; even to Small and Medium-sized Enterprises. This paper aims to investigate whether the BSC is being used in monitoring the performance of small businesses, particularly in small fuel retailers companies, which are competing in co-branding; and if not, it aims to identify its strategic orientation in order to recommend a possible strategy map for those managers that are willing to adopt this model as an alternative to traditional ones for organizational performance evaluation, which often focus only on evaluation of the organizational financial performance.

Optimization of Communication Protocols by stochastic Delay Mechanisms

The paper is concerned with developing stochastic delay mechanisms for efficient multicast protocols and for smooth mobile handover processes which are capable of preserving a given Quality of Service (QoS). In both applications the participating entities (receiver nodes or subscribers) sample a stochastic timer and generate load after a random delay. In this way, the load on the networking resources is evenly distributed which helps to maintain QoS communication. The optimal timer distributions have been sought in different p.d.f. families (e.g. exponential, power law and radial basis function) and the optimal parameter have been found in a recursive manner. Detailed simulations have demonstrated the improvement in performance both in the case of multicast and mobile handover applications.

Analysis of Socio-Cultural Obstacles for Dissemination of Nanotechnology from Iran's Agricultural Experts Perspective

The main purpose of this research was to analyze Socio-Cultural obstacles of disseminating of nanotechnology in Iran's agricultural section. One hundred twenty eight out of a total of 190 researchers with different levels of expertise in and familiarity with nanotechnology were randomly selected and questionnaires completed by them. Face validity have been done by expert's suggestion and correction, reliability by using Cronbakh-Alpha formula. The results of a factor analysis showed variation for different factors. For cultural factors 19/475 percent, for management 13/139 percent, information factor 11/277 percent, production factor 9/703 percent, social factor 9/267 percent, and for attitude factor it became 8/947 percent. Also results indicated that socio-cultural factors were the most important obstacle for nanotechnology dissemination in agricultural section in Iran.

Study of Microbial Critical Points of Saffron from Farm to Factory in Iran

In this research saffron samples were prepared from farms and sampling was done in four states contain : sampling from fresh saffron of petal with forceps , sampling from fresh saffron of petal by hands, sampling from dried sample by warm air in shadow, sampling from dried sample which dried by dryer. Samples collected and kept in sterile tubes and containers and carried to laboratory and maintained until experiment. Microbial experiments were performed to determine microbial load such as total count, Staphylococcus aureus, coli form, E.coli, mold and yeast. Results showed that in picking and drying stages the contamination amount increases in saffron samples. There was a significant difference between the microbial load of picked up saffron by forceps and by hands, and also between dried saffron by warm air in shadow and by dryer.

Occupants- Behavior and Spatial Implications of Riverfront Residential in Yogyakarta, Indonesia

The urbanization phenomenon in Yogyakarta Special Province, Indonesia, encouraged people move to the city for getting jobs in the informal sectors. They live in some temporary houses in the three main riverbanks: Gadjahwong, Code, and Winongo. Triggered by its independent status they use it as the space for accommodating domestic, social and economy activities because of the non standardized room size of their houses, where are recognized as the environmental hazards. This recognition makes the ambivalent perception when was related to the twelfth point of the philosophy of community development concept: the empowering individuals and communities. Its spatial implication have actually described the territory and the place making phenomena. By analyzing some data collected the author-s fundamental research funded by The General Directorate of Higher Education of Indonesia, this paper will discuss how do the spatial implications of the occupants- behavior and the numerous perceptions of those phenomena.

Instructional Design Practitioners in Malaysia: Skills and Issues

The purpose of this research is to determine the knowledge and skills possessed by instructional design (ID) practitioners in Malaysia. As ID is a relatively new field in the country and there seems to be an absence of any studies on its community of practice, the main objective of this research is to discover the tasks and activities performed by ID practitioners in educational and corporate organizations as suggested by the International Board of Standards for Training, Performance and Instruction. This includes finding out the ID models applied in the course of their work. This research also attempts to identify the barriers and issues as to why some ID tasks and activities are rarely or never conducted. The methodology employed in this descriptive study was a survey questionnaire sent to 30 instructional designers nationwide. The results showed that majority of the tasks and activities are carried out frequently enough but omissions do occur due to reasons such as it being out of job scope, the decision was already made at a higher level, and the lack of knowledge and skills. Further investigations of a qualitative manner should be conducted to achieve a more in-depth understanding of ID practices in Malaysia

Effect of Mean Stress on Fatigue Crack Growth Behavior of Stainless Steel 304L

Stainless steel has been employed in many engineering applications ranging from pharmaceutical equipment to piping in the nuclear reactors and storage to chemical products. In this attempt, simulation of fatigue crack growth based on experimental results of austenitic stainless steel 304L was presented using AFGROW code when NASGRO mode laws adopted. Double through crack at hole specimen is used in this investigation under constant amplitude loading. Effect of mean stress is highlighted. Results show that fatigue crack growth rate (FCGR) and fatigue life were affected by maximum applied load and dimension of hole. An equivalent of Paris law for this material was estimated.

Design and Fabrication of a Low Cost Heart Monitor using Reflectance Photoplethysmogram

This paper presents a low cost design of heart beat monitoring device using reflectance mode PhotoPlethysmography (PPG). PPG is known for its simple construction, ease of use and cost effectiveness and can provide information about the changes in cardiac activity as well as aid in earlier non-invasive diagnostics. The proposed device is divided into three phases. First is the detection of pulses through the fingertip. The signal is then passed to the signal processing unit for the purpose of amplification, filtering and digitizing. Finally the heart rate is calculated and displayed on the computer using parallel port interface. The paper is concluded with prototyping of the device followed by verification procedure of the heartbeat signal obtained in laboratory setting.

Cloning and Expression of D-Threonine Aldolase from Ensifer arboris NBRC100383

D-erythro-cyclohexylserine (D chiral unnatural β-hydroxy amino acid expected for the synthesis of drug for AIDS treatment. To develop a continuous bioconversion system with whole cell biocatalyst of D-threonine aldolase (D genes for the D-erythro-CHS production, D-threonine aldolase gene was amplified from Ensifer arboris 100383 by direct PCR amplication using two degenerated oligonucleotide primers designed based on genomic sequence of Shinorhizobium meliloti Sequence analysis of the cloned DNA fragment revealed one open-reading frame of 1059 bp and 386 amino acids. This putative D-TA gene was cloned into NdeI and EcoRI (pEnsi His-tag sequence or BamHI (pEnsi-DTA[2]) sequence of the pET21(a) vector. The expression level of the cloned gene was extremely overexpressed by E. coli BL21(DE3) transformed with pEnsi-DTA[1] compared to E. coli BL21(DE3) transformed with pEnsi-DTA[2]. When the cells expressing the wild used for D-TA enzyme activity, 12 mM glycine was successfully detected in HPLC analysis. Moreover, the whole cells harbouring the recombinant D-TA was able to synthesize D-erythro of 0.6 mg/ml in a batch reaction.

The Impact of Local Decision-Making in Regional Development Schemes on the Achievement of Efficiency in EU Funds

European Union candidate status provides a strong motivation for decision-making in the candidate countries in shaping the regional development policy where there is an envisioned transfer of power from center to the periphery. The process of Europeanization anticipates the candidate countries configure their regional institutional templates in the context of the requirements of the European Union policies and introduces new instruments of incentive framework of enlargement to be employed in regional development schemes. It is observed that the contribution of the local actors to the decision making in the design of the allocation architectures enhances the efficiency of the funds and increases the positive effects of the projects funded under the regional development objectives. This study aims at exploring the performances of the three regional development grant schemes in Turkey, established and allocated under the pre-accession process with a special emphasis given to the roles of the national and local actors in decision-making for regional development. Efficiency analyses have been conducted using the DEA methodology which has proved to be a superior method in comparative efficiency and benchmarking measurements. The findings of this study as parallel to similar international studies, provides that the participation of the local actors to the decision-making in funding contributes both to the quality and the efficiency of the projects funded under the EU schemes.

Endothelial Specificity of ICAM2, Flt-1, and Tie2 Promoters In Vitro and In Vivo

To identify an endothelial cell-specific promoter suitable for vascular-specific targeting, we tested five promoters in vitro--Tie2SE, Tie2LE, ICAM2, Flt-1 and vWF--for promoter activity and specificity in endothelial cells, smooth muscle cells and non-vascular resident cells as well as tissues. These promoters, except for vWF, exhibited good endothelial activity and specificity in vitro. In a syngenic heart transplantation model, the ICAM2 promoter was variably functional in coronary endothelial cells of donor hearts. Thus, the ICAM2, Flt-1, Tie2SE and Tie2LE promoters hold promise for endothelial-specific targeting, but in vitro expression may not predict in vivo expression.

Weld Defect Detection in Industrial Radiography Based Digital Image Processing

Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.