Effect of Mean Stress on Fatigue Crack Growth Behavior of Stainless Steel 304L

Stainless steel has been employed in many engineering applications ranging from pharmaceutical equipment to piping in the nuclear reactors and storage to chemical products. In this attempt, simulation of fatigue crack growth based on experimental results of austenitic stainless steel 304L was presented using AFGROW code when NASGRO mode laws adopted. Double through crack at hole specimen is used in this investigation under constant amplitude loading. Effect of mean stress is highlighted. Results show that fatigue crack growth rate (FCGR) and fatigue life were affected by maximum applied load and dimension of hole. An equivalent of Paris law for this material was estimated.




References:
[1] Lee WS, Lin CF., "Impact properties and microstructure evolution of
304L stainless steel". Mater Sci Engg A 2001; A308:124-35.
[2] Kimura M., Yamaguchi K., Hayakawa M., Kobayashi K., Matsuoka S.,
Takeuchi E., "Fatigue fracture mechanism maps for a type 304 stainless
steel". Metall. Mat. Transf. A, vol. 35A, April 2004, p 1311.
[3] Maas E., Pineau A., "Creep crack growth behaviour of type 316L steel".
Engineering Fracture Mechanics, Vol. 22, Issue 2, 1985, Pages 307-
325.
[4] Singh P. Johan, Guha B., Achar D.R.G., "Fatigue life prediction for
stainless steel welded plate CCT geometry based on Lawrence-s localstress
approach". Engng Fail. Anal. 10, 655-665, 2003.
[5] M. Benachour, A. Hadjoui, M. Benguediab and N. Benachour. Stress
ratio effect on fatigue behavior of aircraft aluminum Alloy 2024T351.
MRS Proceedings, 1276, 7 doi:10.1557/PROC-1276-7, (2010).
[6] Kalnaus S., Fan F., Jiang Y., Vasudevan A.K., "An experimental
investigation on fatigue crack growth of AL6XN stainless steel".
Engineering Fracture Mechanics 75 (2008) 2002-2019.
[7] Kalnaus S., Fan F., Jiang Y., Vasudevan A.K., "An experimental
investigation of fatigue crack growth of stainless steel 304L". Int.
Journal of Fatigue 31 (2009) 840-849.
[8] Duyi Ye, Yuandong Xu, Lei Xiao, Haibo Cha,. "Effects of low-cycle
fatigue on static mechanical properties, microstructures and fracture
behavior of 304 stainless steel". Material Science and Engineering A,
527, n┬░ 16-17 (2010), 4082-4102.
[9] Yahiaoui B., Petrequin P., "Étude de la propagation de fissures par
fatigue dans des aciers inoxydables austénitiques ├á bas carbone du type
304L et 316L". Rev. Phys. Appl. (Paris) Vol. 9(4), 1974. 683-690.
[10] Park HB, Lee BW., "Effect of specimen thickness on fatigue crack
growth rate". Nuclear Engng Des 2000; 197:197-203.
[11] Newman, J.C., 1984, "A crack opening stress equation for fatigue crack
growth". International Journal of Fracture, 24(3), R131-135.
[12] Harter, J.A, "AFGROW users guide and technical manual: AFGROW
for Windows 2K/XP". Version 4.0011.14, Air Force Research
Laboratory.
[13] M. Benachour, A. Hadjoui, N. Benachour, "Effect of geometrical and
loading parameters on fatigue crack growth of stainless steel 316L".
Proceedings of the ASME 2010 10th Biennial Conference on
Engineering Systems Design and Analysis (ESDA 2010), Vol. 1, n┬░
ESDA2010-24055, pp 351-355.
[14] M. Benachour, N. Benachour, "Comparative study of FCG of stainless
steel 304L and 316L". Submitted and Accepted to Eurosteel 2011
Conference, August 31 to September 2, 2011, Budapest, Hungary.