Air Quality in Sports Venues with Distinct Characteristics

In July 2012, an indoor/outdoor monitoring programme was undertaken in two university sports facilities: a fronton and a gymnasium. Comfort parameters (temperature, relative humidity, CO and CO2) and total volatile organic compounds (VOCs) were continuously monitored. Concentrations of NO2, carbonyl compounds and individual VOCs were obtained. Low volume samplers were used to collect particulate matter (PM10). The minimum ventilation rates stipulated for acceptable indoor air quality were observed in both sports facilities. It was found that cleaning activities may have a large influence on the VOC levels. Acrolein was one of the most abundant carbonyl compounds, showing concentrations above the recommended limit. Formaldehyde was detected at levels lower than those commonly reported for other indoor environments. The PM10 concentrations obtained during the occupancy periods ranged between 38 and 43μgm-3 in the fronton and from 154 to 198μgm-3 in the gymnasium.

Real-Time Detecting Concentration of Mycobacterium Tuberculosis by CNTFET Biosensor

Aptamers are useful tools in microorganism researches, diagnoses, and treatment. Aptamers are specific target molecules formed by oligonucleic acid molecules, and are not decomposed by alcohol. Aptamers used to detect Mycobacterium tuberculosis (MTB) have been proved to have specific affinity to the outer membrane proteins of MTB. This article presents a biosensor chip set with aptamers for early detection of MTB with high specificity and sensitivity, even in very low concentration. Meanwhile, we have already made a modified hydrophobic facial mask module with internal rendering hydrophobic for effectively collecting M. tuberculosis.

Supporting QoS-aware Multicasting in Differentiated Service Networks

A scalable QoS aware multicast deployment in DiffServ networks has become an important research dimension in recent years. Although multicasting and differentiated services are two complementary technologies, the integration of the two technologies is a non-trivial task due to architectural conflicts between them. A popular solution proposed is to extend the functionality of the DiffServ components to support multicasting. In this paper, we propose an algorithm to construct an efficient QoSdriven multicast tree, taking into account the available bandwidth per service class. We also present an efficient way to provision the limited available bandwidth for supporting heterogeneous users. The proposed mechanism is evaluated using simulated tests. The simulated result reveals that our algorithm can effectively minimize the bandwidth use and transmission cost

Performance of Random Diagonal Codes for Spectral Amplitude Coding Optical CDMA Systems

In this paper we study the use of a new code called Random Diagonal (RD) code for Spectral Amplitude Coding (SAC) optical Code Division Multiple Access (CDMA) networks, using Fiber Bragg-Grating (FBG), FBG consists of a fiber segment whose index of reflection varies periodically along its length. RD code is constructed using code level and data level, one of the important properties of this code is that the cross correlation at data level is always zero, which means that Phase intensity Induced Phase (PIIN) is reduced. We find that the performance of the RD code will be better than Modified Frequency Hopping (MFH) and Hadamard code It has been observed through experimental and theoretical simulation that BER for RD code perform significantly better than other codes. Proof –of-principle simulations of encoding with 3 channels, and 10 Gbps data transmission have been successfully demonstrated together with FBG decoding scheme for canceling the code level from SAC-signal.

Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008

Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance.

Emission Assessment of Rice Husk Combustion for Power Production

Rice husk is one of the alternative fuels for Thailand because of its high potential and environmental benefits. Nonetheless, the environmental profile of the electricity production from rice husk must be assessed to ensure reduced environmental damage. A 10 MW pilot plant using rice husk as feedstock is the study site. The environmental impacts from rice husk power plant are evaluated by using the Life Cycle Assessment (LCA) methodology. Energy, material and carbon balances have been determined for tracing the system flow. Carbon closure has been used for describing of the net amount of CO2 released from the system in relation to the amount being recycled between the power plant and the CO2 adsorbed by rice husk. The transportation of rice husk to the power plant has significant on global warming, but not on acidification and photo-oxidant formation. The results showed that the impact potentials from rice husk power plant are lesser than the conventional plants for most of the categories considered; except the photo-oxidant formation potential from CO. The high CO from rice husk power plant may be due to low boiler efficiency and high moisture content in rice husk. The performance of the study site can be enhanced by improving the combustion efficiency.

Robot Motion Planning in Dynamic Environments with Moving Obstacles and Target

This paper presents a new sensor-based online method for generating collision-free near-optimal paths for mobile robots pursuing a moving target amidst dynamic and static obstacles. At each iteration, first the set of all collision-free directions are calculated using velocity vectors of the robot relative to each obstacle and target, forming the Directive Circle (DC), which is a novel concept. Then, a direction close to the shortest path to the target is selected from feasible directions in DC. The DC prevents the robot from being trapped in deadlocks or local minima. It is assumed that the target's velocity is known, while the speeds of dynamic obstacles, as well as the locations of static obstacles, are to be calculated online. Extensive simulations and experimental results demonstrated the efficiency of the proposed method and its success in coping with complex environments and obstacles.

Investigation of the Relationship between Exam Anxiety and Binge Disorders in High School Students in the 15-19 Age Range

Goat milk has an hypoallergenic effects, and allergic diseases related to abnormal of intestinal flora. Probiotic microorganisms do exert an activity on the immune system in the skin of the individual.The purpose of this study are to determine the number of leukocyte and lymphocyte proliferation in rat supplemented with fermented goat milk (acidophilus milk and kefir) and sensitized with dinitrochlorobenzene (DNCB). Female Wistar rats 6-8 weeks olds were divided into 3 treatment groups. The first group supplemented goat milk kefir, second group acidophilus goat milk, and third group as control. During 28-day experiment, on day 15 rat sensitized with allergen DNCB on the dorsal of the body, and on day 24 was challenged with DNCB on the ear. Sampling of blood and tissue of intestinal Peyer'patch (PP) were performed on day 14 (before DNCB sensitized) and on day 28 (after DNCB sensitized). The results showed the number of neutrophils in rats supplemented with acidophilus milk was higher (P

Average Current Estimation Technique for Reliability Analysis of Multiple Semiconductor Interconnects

Average current analysis checking the impact of current flow is very important to guarantee the reliability of semiconductor systems. As semiconductor process technologies improve, the coupling capacitance often become bigger than self capacitances. In this paper, we propose an analytic technique for analyzing average current on interconnects in multi-conductor structures. The proposed technique has shown to yield the acceptable errors compared to HSPICE results while providing computational efficiency.

Proposal of a Means for Reducing the Torque Variation on a Vertical-Axis Water Turbine by Increasing the Blade Number

This paper presents a means for reducing the torque variation during the revolution of a vertical-axis water turbine (VAWaterT) by increasing the blade number. For this purpose, twodimensional CFD analyses have been performed on a straight-bladed Darrieus-type rotor. After describing the computational model and the relative validation procedure, a complete campaign of simulations, based on full RANS unsteady calculations, is proposed for a three, four and five-bladed rotor architectures, characterized by a NACA 0025 airfoil. For each proposed rotor configuration, flow field characteristics are investigated at several values of tip speed ratio, allowing a quantification of the influence of blade number on flow geometric features and dynamic quantities, such as rotor torque and power. Finally, torque and power curves are compared for the three analyzed architectures, achieving a quantification of the effect of blade number on overall rotor performance.

IIR Filter design with Craziness based Particle Swarm Optimization Technique

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Internet Governance based on Multiple-Stakeholders: Opportunities, Issues and Developments

The Internet is the global data communications infrastructure based on the interconnection of both public and private networks using protocols that implement Internetworking on a global scale. Hence the control of protocol and infrastructure development, resource allocation and network operation are crucial and interlinked aspects. Internet Governance is the hotly debated and contentious subject that refers to the global control and operation of key Internet infrastructure such as domain name servers and resources such as domain names. It is impossible to separate technical and political positions as they are interlinked. Furthermore the existence of a global market, transparency and competition impact upon Internet Governance and related topics such as network neutrality and security. Current trends and developments regarding Internet governance with a focus on the policy-making process, security and control have been observed to evaluate current and future implications on the Internet. The multi stakeholder approach to Internet Governance discussed in this paper presents a number of opportunities, issues and developments that will affect the future direction of the Internet. Internet operation, maintenance and advisory organisations such as the Internet Corporation for Assigned Names and Numbers (ICANN) or the Internet Governance Forum (IGF) are currently in the process of formulating policies for future Internet Governance. Given the controversial nature of the issues at stake and the current lack of agreement it is predicted that institutional as well as market governance will remain present for the network access and content.

A Comparison Study of Electrical Characteristics in Conventional Multiple-gate Silicon Nanowire Transistors

In this paper electrical characteristics of various kinds of multiple-gate silicon nanowire transistors (SNWT) with the channel length equal to 7 nm are compared. A fully ballistic quantum mechanical transport approach based on NEGF was employed to analyses electrical characteristics of rectangular and cylindrical silicon nanowire transistors as well as a Double gate MOS FET. A double gate, triple gate, and gate all around nano wires were studied to investigate the impact of increasing the number of gates on the control of the short channel effect which is important in nanoscale devices. Also in the case of triple gate rectangular SNWT inserting extra gates on the bottom of device can improve the application of device. The results indicate that by using gate all around structures short channel effects such as DIBL, subthreshold swing and delay reduces.

The Upconversion of co-doped Nd3+/Er3+Tellurite Glass

Series of tellurite glass of the system 78TeO2-10PbO- 10Li2O-(2-x)Nd2O3-xEr2O3, where x = 0.5, 1.0, 1.5 and 2.0 was successfully been made. A study of upconversion luminescence of the Nd3+/Er3+ co-doped tellurite glass has been carried out. From Judd-Ofelt analysis, the experimental lifetime, exp. τ of the glass serie are found higher in the visible region as they varies from 65.17ms to 114.63ms, whereas in the near infrared region (NIR) the lifetime are varies from 2.133ms to 2.270ms. Meanwhile, the emission cross section,σ results are found varies from 0.004 x 1020 cm2 to 1.007 x 1020 cm2 with respect to composition. The emission spectra of the glass are found been contributed from Nd3+ and Er3+ ions by which nine significant transition peaks are observed. The upconversion mechanism of the co-doped tellurite glass has been shown in the schematic energy diagrams. In this works, it is found that the excited state-absorption (ESA) is still dominant in the upconversion excitation process as the upconversion excitation mechanism of the Nd3+ excited-state levels is accomplished through a stepwise multiphonon process. An efficient excitation energy transfer (ET) has been observed between Nd3+ as a donor and Er3+ as the acceptor. As a result, respective emission spectra had been observed.

Bridging the Communication Gap at NASA - A Case Study in Communities of Practice

Following the loss of NASA's Space Shuttle Columbia in 2003, it was determined that problems in the agency's organization created an environment that led to the accident. One component of the proposed solution resulted in the formation of the NASA Engineering Network (NEN), a suite of information retrieval and knowledge-sharing tools. This paper describes the implementation of communities of practice, which are formed along engineering disciplines. Communities of practice enable engineers to leverage their knowledge and best practices to collaborate and take information learning back to their jobs and embed it into the procedures of the agency. This case study offers insight into using traditional engineering disciplines for virtual collaboration, including lessons learned during the creation and establishment of NASA-s communities.

Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette

Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.

Evaluating the Effect of Domestic Price on Rice Production in an African Setting: A Typical Evidence of the Sierra Leone Case

Rice, which is the staple food in Sierra Leone, is consumed on a daily basis. It is the most imperative food crop extensively grown by farmers across all ecologies in the country. Though much attention is now given to rice grain production through the small holder commercialization programme (SHCP), however, no attention has been given in investigating the limitations faced by rice producers. This paper will contribute to attempts to overcome the development challenges caused by food insecurity. The objective of this paper is thus, to analysis the relationship between rice production and the domestic retail price of rice. The study employed a log linear model in which, the quantity of rice produced is the dependent variable, quantity of rice imported, price of imported rice and price of domestic rice as explanatory variables. Findings showed that, locally produced rice is even more expensive than the imported rice per ton, and almost all the inhabitants in the capital city which hosts about 65% of the entire population of the country favor imported rice, as it is free from stones with other impurities. On the other hand, to control price and simultaneously increase rice production, the government should purchase the rice from the farmers and then sell to private retailers.

Effects of Ultrasonic Treatment on Germination of Synthetic Sunflower Seeds

One problem of synthetic sunflower cultivation is an erratic germination of the seeds. To improve the germination, presowing seed treatment with an ultrasound was tested. All treatments were carried out at 40 kHz frequency with the intensities of 40, 60, 80 and 100% of the ultrasonic generator total power (250 W) for the durations of 5, 10, 15 and 20 minutes. Data on seed germination percentage, seed vigor index (SVI), root and shoot lengths of seedlings were collected. The results showed that germination, SVI, root and shoot lengths of ultrasonic treated seedlings were different from the control, depending on intensity of the ultrasound. The effects of ultrasonic treatment were significant on germination, resulting in a maximum increase of 43% at 40 and 60% intensities compared to that of the control seeds. In addition, seedlings of these 2 treatments had higher SVI and longer root and shoot lengths than that of the control seedlings. All treatment durations resulted in higher germination and SVI, longer root and higher shoot lenghts of seedlings than the control. Among the duration treatments, only SVI and seedling root length were significantly different.

The Effects of the Impact of Instructional Immediacy on Cognition and Learning in Online Classes

Current research has explored the impact of instructional immediacy, defined as those behaviors that help build close relationships or feelings of closeness, both on cognition and motivation in the traditional classroom and online classroom; however, online courses continue to suffer from higher dropout rates. Based on Albert Bandura-s Social Cognitive Theory, four primary relationships or interactions in an online course will be explored in light of how they can provide immediacy thereby reducing student attrition and improving cognitive learning. The four relationships are teacher-student, student-student, and student-content, and studentcomputer. Results of a study conducted with inservice teachers completing a 14-week online professional development technology course will be examined to demonstrate immediacy strategies that improve cognitive learning and reduce student attrition. Results of the study reveal that students can be motivated through various interactions and instructional immediacy behaviors which lead to higher completion rates, improved self-efficacy, and cognitive learning.

An Experimental Study of Tip Vortex Cavitation Inception in an Axial Flow Pump

The interaction of the blade tip with the casing boundary layer and the leakage flow may lead to a kind of cavitation namely tip vortex cavitation. In this study, the onset of tip vortex cavitation was experimentally investigated in an axial flow pump. For a constant speed and a fixed angle of attack and by changing the flow rate, the pump head, input power, output power and efficiency were calculated and the pump characteristic curves were obtained. The cavitation phenomenon was observed with a camera and a stroboscope. Finally, the critical flow region, which tip vortex cavitation might have occurred, was identified. The results show that just by adjusting the flow rate, out of the specified region, the possibility of occurring tip vortex cavitation, decreases to a great extent.