Development of Integrated GIS Interface for Characteristics of Regional Daily Flow

The purpose of this paper primarily intends to develop GIS interface for estimating sequences of stream-flows at ungauged stations based on known flows at gauged stations. The integrated GIS interface is composed of three major steps. The first, precipitation characteristics using statistical analysis is the procedure for making multiple linear regression equation to get the long term mean daily flow at ungauged stations. The independent variables in regression equation are mean daily flow and drainage area. Traditionally, mean flow data are generated by using Thissen polygon method. However, method for obtaining mean flow data can be selected by user such as Kriging, IDW (Inverse Distance Weighted), Spline methods as well as other traditional methods. At the second, flow duration curve (FDC) is computing at unguaged station by FDCs in gauged stations. Finally, the mean annual daily flow is computed by spatial interpolation algorithm. The third step is to obtain watershed/topographic characteristics. They are the most important factors which govern stream-flows. In summary, the simulated daily flow time series are compared with observed times series. The results using integrated GIS interface are closely similar and are well fitted each other. Also, the relationship between the topographic/watershed characteristics and stream flow time series is highly correlated.

Optimizing Feature Selection for Recognizing Handwritten Arabic Characters

Recognition of characters greatly depends upon the features used. Several features of the handwritten Arabic characters are selected and discussed. An off-line recognition system based on the selected features was built. The system was trained and tested with realistic samples of handwritten Arabic characters. Evaluation of the importance and accuracy of the selected features is made. The recognition based on the selected features give average accuracies of 88% and 70% for the numbers and letters, respectively. Further improvements are achieved by using feature weights based on insights gained from the accuracies of individual features.

Influence of Drought on Yield and Yield Components in White Bean

In order to study seed yield and seed yield components in bean under reduced irrigation condition and assessment drought tolerance of genotypes, 15 lines of White beans were evaluated in two separate RCB design with 3 replications under stress and non stress conditions. Analysis of variance showed that there were significant differences among varieties in terms of traits under study, indicating the existence of genetic variation among varieties. The results indicate that drought stress reduced seed yield, number of seed per plant, biological yield and number of pod in White been. In non stress condition, yield was highly correlated with the biological yield, whereas in stress condition it was highly correlated with harvest index. Results of stepwise regression showed that, selection can we done based on, biological yield, harvest index, number of seed per pod, seed length, 100 seed weight. Result of path analysis showed that the highest direct effect, being positive, was related to biological yield in non stress and to harvest index in stress conditions. Factor analysis were accomplished in stress and nonstress condition a, there were 4 factors that explained more than 76 percent of total variations. We used several selection indices such as Stress Susceptibility Index ( SSI ), Geometric Mean Productivity ( GMP ), Mean Productivity ( MP ), Stress Tolerance Index ( STI ) and Tolerance Index ( TOL ) to study drought tolerance of genotypes, we found that the best Stress Index for selection tolerance genotypes were STI, GMP and MP were the greatest correlations between these Indices and seed yield under stress and non stress conditions. In classification of genotypes base on phenotypic characteristics, using cluster analysis ( UPGMA ), all allels classified in 5 separate groups in stress and non stress conditions.

Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models

We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.

The Evaluation and the Comparison of the Effect of Without Engine Power and Power Mechanical Systems on Rice Weed

In order to study the influence of different methods of controlling weeds such as mechanical weeding and mechanical weeder efficiency analysis in mechanical cultivation conditions, in farming year of 2011 an experiment was done in a farm in coupling and development of technology center in Haraz,Iran. The treatments consisted of (I) control treatment: where no weeding was done, (II) use of mechanical weeding without engine and (III) power mechanical weeding. Results showed that experimental treatments had significantly different effects (p=0.05) on yield traits and number of filled grains per panicle, while treatments had the significant effects on grain weight and dry weight of weeds in the first, second and third weeding methods at 1% of confidence level. Treatment (II) had its most significant effect on number of filled grains per panicle and yield performance standpoint, which was 3705.97 kg ha-1 in its highest peak. Treatment (III) was ranked as second influential with 3559.8 kg ha-1. In addition, under (I) treatments, 2364.73 kg ha-1 of yield produced. The minimum dry weights of weeds in all weeding methods were related to the treatment (II), (III) and (I), respectively. The correlation coefficient analysis showed that total yield had a significant positive correlation with the panicle grain yield per plant (r= 0.55*) and the number of grains per panicle-1 (r= 0.57*) and the number of filled grains (r= 0.63*). Total rice yield also had negative correlation of r= -0. 64* with weed dry weight at second weed sampling time (17 DAT). The weed dry weight at third and fourth sampling times (24 and 40 DAT) had negative correlations of -0.65** and r=-0.61* with rice yield, respectively.

Some Physico-Chemical Characteristics and Mineral Contents of Gilaburu (Viburnum opulus L.) Fruits in Turkey

Gilaburu (Viburnum opulus L.) grown naturally in Anatolia. In this study, some physico-chemical (sugar, acid, protein, crude fat, crude fiber, ash etc.) characteristics and mineral composition of Gilaburu fruit have been investigated. The length, width, thickness, weight, total soluble solid, protein, crude ash, crude fiber and crude oil of fruit were found to be 1.12 cm, 1.58 cm, 1.87 cm, 0.87 g, 14.73 %, 0.2 %, 0.11 %, 6.56 % and 0.4 %, respectively. The seed of fruit mean weight, length, width and thickness were determinated as 0.08 g, 7.76 cm, 7.67 cm and 1.66, respectively. In addition 27 mineral elements (Al, Mg, Na, Ba, Ca, Ni, Cd, P, Cr, Pb, S, Cu, Se, Fe, K, Sr, Li, Z, V, Ag, Bi, Co, Mn, B, Ga, In, Ti) were analyzed. Gilaburu (Viburnum opulus L.) fruit was richest in potassium (10764.764 ppm), Mg (1289.088 ppm) and P (1304.169 ppm).

Level of Service Based Methodology for Municipal Infrastructure Management

Development of levels of service in municipal context is a flexible vehicle to assist in performing quality-cost trade-off analysis for municipal services. This trade-off depends on the willingness of a community to pay as well as on the condition of the assets. Community perspective of the performance of an asset from service point of view may be quite different from the municipality perspective of the performance of the same asset from condition point of view. This paper presents a three phased level of service based methodology for water mains that consists of :1)development of an Analytical Hierarchy model of level of service 2) development of Fuzzy Weighted Sum model of water main condition index and 3) deriving a Fuzzy logic based function that maps level of service to asset condition index. This mapping will assist asset managers in quantifying condition improvement requirement to meet service goals and to make more informed decisions on interventions and relayed priorities.

Sub-Image Detection Using Fast Neural Processors and Image Decomposition

In this paper, an approach to reduce the computation steps required by fast neural networksfor the searching process is presented. The principle ofdivide and conquer strategy is applied through imagedecomposition. Each image is divided into small in sizesub-images and then each one is tested separately usinga fast neural network. The operation of fast neuralnetworks based on applying cross correlation in thefrequency domain between the input image and theweights of the hidden neurons. Compared toconventional and fast neural networks, experimentalresults show that a speed up ratio is achieved whenapplying this technique to locate human facesautomatically in cluttered scenes. Furthermore, fasterface detection is obtained by using parallel processingtechniques to test the resulting sub-images at the sametime using the same number of fast neural networks. Incontrast to using only fast neural networks, the speed upratio is increased with the size of the input image whenusing fast neural networks and image decomposition.

A Comparative Study on Survival and Growth of Larvivorous Fish, Rasbora daniconius, Puntius ticto, and Puntius Conchonius

Experiments were carried out on the survival and growth of Rasbora daniconius, Puntius ticto and Puntius conchonius. The motivation of the study was to obtain information for growing the fish on a commercial scale for their use as biological control agents against mosquito larvae. The effects of temperature, total hardness, DO, pH and feed on the growth of fish were also investigated. Excessive value of total hardness was found because very rich calcium ion is present in Chitrakoot area. There was significant increases in growth rates of fish as temperature was increased from 280C to 300C. Further increases in temperature up to 320C, did not further affect growth. The positive and highly significant correlations 0.991488, 0.9581 and 0.9935 were found between length and weight of P. ticto, P. conchonius and R. daniconius respectively. The regression was significant at 5% level of probability.

Project Selection Using Fuzzy Group Analytic Network Process

This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.

A Finite Precision Block Floating Point Treatment to Direct Form, Cascaded and Parallel FIR Digital Filters

This paper proposes an efficient finite precision block floating point (BFP) treatment to the fixed coefficient finite impulse response (FIR) digital filter. The treatment includes effective implementation of all the three forms of the conventional FIR filters, namely, direct form, cascaded and par- allel, and a roundoff error analysis of them in the BFP format. An effective block formatting algorithm together with an adaptive scaling factor is pro- posed to make the realizations more simple from hardware view point. To this end, a generic relation between the tap weight vector length and the input block length is deduced. The implementation scheme also emphasises on a simple block exponent update technique to prevent overflow even during the block to block transition phase. The roundoff noise is also investigated along the analogous lines, taking into consideration these implementational issues. The simulation results show that the BFP roundoff errors depend on the sig- nal level almost in the same way as floating point roundoff noise, resulting in approximately constant signal to noise ratio over a relatively large dynamic range.

Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. Sisal fibre has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18 and 24% by weight of sisal fibres were assessed. Sisal fibre reinforced cement composite slabs with long sisal fibres were manufactured using a cast hand lay up technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively. 

Issues in Deploying Smart Antennas in Mobile Radio Networks

With the exponentially increasing demand for wireless communications the capacity of current cellular systems will soon become incapable of handling the growing traffic. Since radio frequencies are diminishing natural resources, there seems to be a fundamental barrier to further capacity increase. The solution can be found in smart antenna systems. Smart or adaptive antenna arrays consist of an array of antenna elements with signal processing capability, that optimize the radiation and reception of a desired signal, dynamically. Smart antennas can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. They thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. Smart antennas can also track the user within a cell via direction of arrival algorithms. This implies that they are more advantageous than other antenna systems. This paper focuses on few issues about the smart antennas in mobile radio networks.

The Synergistic Effects of Using Silicon and Selenium on Fruiting of Zaghloul Date Palm (Phoenix dectylifera L.)

During 2011 and 2012 seasons, Zaghloul date palms received four sprays of silicon (Si) at 0.05 to 0.1% and selenium (Se) at 0.01 to 0.02%. Growth, nutritional status, yield as well as physical and chemical characteristics of the fruits in response to application of silicon and selenium were investigated. Single and combined applications of silicon at 0.05 to 0.1% and selenium at 0.01 to 0.02% was very effective in enhancing the leaf area, total chlorophylls, percentages of N, P and K in the leaves, yield, bunch weight as well as physical and chemical characteristics of the fruits in relative to the check treatment. Silicon was superior to selenium in this respect. Combined application was favorable than using each alone in this connection. Treating Zaghloul date palms four times with a mixture of silicon at 0.05% + selenium at 0.01% resulted in an economical yield and producing better fruit quality.

Lightweight Materials Obtained by Utilization of Agricultural Waste

Lightweight ceramic materials in the form of bricks and blocks are widely used in modern construction. They may be obtained by adding of rice husk, rye straw, etc, as porous forming materials. Rice husk is a major by-product of the rice milling industry. Its utilization as a valuable product has always been a problem. Various technologies for utilization of rice husk through biological and thermochemical conversion are being developed. The purpose of this work is to develop lightweight ceramic materials with clay matrix and filler of rice husk and examine their main physicomechanical properties. The results obtained allow to suppose that the materials synthesized on the basis of waste materials can be used as lightweight materials for construction purpose.

Investigation of Gas Phase Composition During Carbon Nanotube Production

Chemical vapor deposition method was used to produce carbon nanotubes on an iron based catalyst from acetylene. Gas-phase samples collected from the different positions of the tubular reactor were analyzed by GC/MS. A variety of species ranging from hydrogen to naphthalene were observed and changes in their concentrations were plotted against the reactor position. Briefly benzene, toluene, styrene, indene and naphthalene were the main higher molecular weight species and vinylacetylene and diacetylene were the important intermediates. Nanotube characterization was performed by scanning electron microscopy and transmission electron microscopy.

Performance Analysis of Fuzzy Logic Based Unified Power Flow Controller

FACTS devices are used to control the power flow, to increase the transmission capacity and to optimize the stability of the power system. One of the most widely used FACTS devices is Unified Power Flow Controller (UPFC). The controller used in the control mechanism has a significantly effects on controlling of the power flow and enhancing the system stability of UPFC. According to this, the capability of UPFC is observed by using different control mechanisms based on P, PI, PID and fuzzy logic controllers (FLC) in this study. FLC was developed by taking consideration of Takagi- Sugeno inference system in the decision process and Sugeno-s weighted average method in the defuzzification process. Case studies with different operating conditions are applied to prove the ability of UPFC on controlling the power flow and the effectiveness of controllers on the performance of UPFC. PSCAD/EMTDC program is used to create the FLC and to simulate UPFC model.

In vitro Culture Medium Sterilization by Chemicals and Essential Oils without Autoclaving and Growth of Chrysanthemum Nodes

Plant tissue culture is an important in vitro technology applied for agricultural and industrial production. A sterile condition of culture medium is one of the main aspects. The alternative technique for medium sterilization to replace autoclaving was carried out. For sterilization of plant tissue culture medium without autoclaving, ten commercial pure essential oils and 5 disinfectants were tested. Each essential oil or disinfectant was added to a 20-mL Murashige and Skoog (MS) medium before medium was solidified in a 120-mL container, kept for 2 weeks before evaluating sterile conditions. Treated media, supplemented with essential oils or disinfectants, were compared to control medium, autoclaved at 121 degree Celsius for 15 min. Sterile conditions of MS medium were found 100% from betel oil or clove oil (18 mL/20 mL medium), cinnamon oil (36 mL/20 mL medium), lavender oil or holy basil oil (108 mL/20 mL medium), and lemon oil or tea tree oil or turmeric oil (252 mL/20 mL medium), compared to 100% sterile condition from autoclaved medium. For disinfectants, 2% iodine + 2.4% potassium iodide, 2% merbromine solution, 10% povidone-iodine, 6% sodium hypochlorite or 0.1% thimerosal at 36 mL/20 mL medium provided 100% sterile conditions. Furthermore, growth of new shoots from chrysanthemum node explants on treated media (fresh weight, shoot length, root length and number of node) were also reported and discussed in the comparison of those on autoclaved medium.

Microstructure and Mechanical Behaviuor of Rotary Friction Welded Titanium Alloys

Ti-6Al-4V alloy has demonstrated a high strength to weight ratio as well as good properties at high temperature. The successful application of the alloy in some important areas depends on suitable joining techniques. Friction welding has many advantageous features to be chosen for joining Titanium alloys. The present work investigates the feasibility of producing similar metal joints of this Titanium alloy by rotary friction welding method. The joints are produced at three different speeds and the performances of the welded joints are evaluated by conducting microstructure studies, Vickers Hardness and tensile tests at the joints. It is found that the weld joints produced are sound and the ductile fractures in the tensile weld specimens occur at locations away from the welded joints. It is also found that a rotational speed of 1500 RPM can produce a very good weld, with other parameters kept constant.

Improved Asymptotic Stability Analysis for Lure Systems with Neutral Type and Time-varying Delays

This paper investigates the problem of absolute stability and robust stability of a class of Lur-e systems with neutral type and time-varying delays. By using Lyapunov direct method and linear matrix inequality technique, new delay-dependent stability criteria are obtained and formulated in terms of linear matrix inequalities (LMIs) which are easy to check the stability of the considered systems. To obtain less conservative stability conditions, an operator is defined to construct the Lyapunov functional. Also, the free weighting matrices approach combining a matrix inequality technique is used to reduce the entailed conservativeness. Numerical examples are given to indicate significant improvements over some existing results.