A New Correlation for Overall Sherwood Number in Packed Liquid-Liquid Extraction Column

Using plug flow model in conjunction with experimental solute concentration profiles, overall volumetric mass transfer coefficient based on continuous phase (Koca), in a packed liquid-liquid extraction column has been optimized. Number of 12 experiments has been done using standard system of water/acid acetic/toluene in a 6 cm diameter, 120 cm height column. Thorough consideration of influencing parameters we intended to correlate dimensionless parameters in term of overall Sherwood number which has an acceptable average error of about 15.8%.

Design and Control Strategy of Diffused Air Aeration System

During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).

An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials

This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.

Influence of Degradative Enzymatic Activities on the Shelf Life of Ready-to-Eat Prickly Pear Fruits

Prickly pear fruit (Opuntia ficus indica L. Miller) belongs to the Cactaceae family. This species is very sensitive to low storage temperatures (< 5°C) which cause damages. The fruits can be peeled, suitably packaged and successfully commercialized as a ready-to-eat product. The main limit to the extension of the shelf life is the production of off-flavors due to different factors, the growth of microorganisms and the action of endogenous enzymes. Lipoxygenase (LOX) and Pectinesterase (PE) are involved in fruit degradation. In particular, LOX pathway is directly responsible for lipid oxidation, and the subsequent production of off-flavours, while PE causes the softening of fruit during maturation. They act on the texture and shelf-life of post-harvest, packaged fruits, as a function of the the grown of microorganisms and packaging technologies used. The aim of this work is to compare the effect of different packaging technologies on the shelf life extension of ready-to-eat prickly pear fruits with regards for the enzymes activities.

Pulsating Flow of an Incompressible Couple Stress Fluid Between Permeable Beds

The paper deals with the pulsating flow of an incompressible couple stress fluid between permeable beds. The couple stress fluid is injected into the channel from the lower permeable bed with a certain velocity and is sucked into the upper permeable bed with the same velocity. The flow between the permeable beds is assumed to be governed by couple stress fluid flow equations of V. K. Stokes and that in the permeable regions by Darcy-s law. The equations are solved analytically and the expressions for velocity and volume flux are obtained. The effects of the material parameters are studied numerically and the results are presented through graphs.

Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor

In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.

Numerical Study of Oxygen Enrichment on NO Pollution Spread in a Combustion Chamber

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aim to obtain detailed information on combustion characteristics and _ nitrogen oxides in the furnace and the effect of oxygen enrichment in a combustion process. Oxygenenriched combustion is an effective way to reduce emissions. This paper analyzes NO emission, including thermal NO and prompt NO. Flow rate ratio of air to fuel is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.32 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Results show that for AF=1.3, increase the oxygen flow rate of oxygen reduction in NO emissions is Lance. Moreover, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak, but not the NO emission rate. As a result, oxygen enrichment can reduce the NO emission at this kind of furnace in low air to fuel rates.

Automat Control of the Aircrafts- Lateral Movement using the Dynamic Inversion

The paper presents a new system for the automat control of the aircrafts- flight in lateral plane using the cinematic model and the dynamic inversion. Starting from the equations of the aircrafts- lateral movement, the authors use two axes systems and obtained a control law that cancels the lateral deviation of the flying objects from the runway line. This system makes the aircrafts- direction angle to follow the direction angle of the runway line. Simulations in Matlab/Simulink have been done for different aircraft-s initial points and direction angles. The inconvenience of this system is the long duration of the “transient regime". That is why this system can be used independently, but the results are not very good; thus, it can be a part (subsystem) of other systems. The main system that cancels the lateral deviation from the runway line is based on dynamic inversion and uses, as subsystem, the control system for the lateral movement using the cinematic model. Using complex Matlab/Simulink models, the authors obtained the time evolution of the direction angle and the time evolution of the aircraft lateral deviation with respect to the runway line, for different values of the initial direction angle and for different wind types. The system has a very good behavior for all initial direction angles and wind types.

Combining the Description Features of UMLRT and CSP+T Specifications Applied to a Complete Design of Real-Time Systems

UML is a collection of notations for capturing a software system specification. These notations have a specific syntax defined by the Object Management Group (OMG), but many of their constructs only present informal semantics. They are primarily graphical, with textual annotation. The inadequacies of standard UML as a vehicle for complete specification and implementation of real-time embedded systems has led to a variety of competing and complementary proposals. The Real-time UML profile (UML-RT), developed and standardized by OMG, defines a unified framework to express the time, scheduling and performance aspects of a system. We present in this paper a framework approach aimed at deriving a complete specification of a real-time system. Therefore, we combine two methods, a semiformal one, UML-RT, which allows the visual modeling of a realtime system and a formal one, CSP+T, which is a design language including the specification of real-time requirements. As to show the applicability of the approach, a correct design of a real-time system with hard real time constraints by applying a set of mapping rules is obtained.

A New Knapsack Public-Key Cryptosystem Based on Permutation Combination Algorithm

A new secure knapsack cryptosystem based on the Merkle-Hellman public key cryptosystem will be proposed in this paper. Although it is common sense that when the density is low, the knapsack cryptosystem turns vulnerable to the low-density attack. The density d of a secure knapsack cryptosystem must be larger than 0.9408 to avoid low-density attack. In this paper, we investigate a new Permutation Combination Algorithm. By exploiting this algorithm, we shall propose a novel knapsack public-key cryptosystem. Our proposed scheme can enjoy a high density to avoid the low-density attack. The density d can also exceed 0.9408 to avoid the low-density attack.

Determination of Critical Source Areas for Sediment Loss: Sarrath River Basin, Tunisia

The risk of water erosion is one of the main environmental concerns in the southern Mediterranean regions. Thus, quantification of soil loss is an important issue for soil and water conservation managers. The objective of this paper is to examine the applicability of the Soil and Water Assessment Tool (SWAT) model in The Sarrath river catchment, North of Tunisia, and to identify the most vulnerable areas in order to help manager implement an effective management program. The spatial analysis of the results shows that 7 % of the catchment experiences very high erosion risk, in need for suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes estimated 3% high, 5,4% tolerable, and 84,6% low. Among the 27 delineated subcatchments only 4 sub-catchments are found to be under high and very high soil loss group, two sub-catchments fell under moderate soil loss group, whereas other sub-catchments are under low soil loss group.

New Mitigating Technique to Overcome DDOS Attack

In this paper, we explore a new scheme for filtering spoofed packets (DDOS attack) which is a combination of path fingerprint and client puzzle concepts. In this each IP packet has a unique fingerprint is embedded that represents, the route a packet has traversed. The server maintains a mapping table which contains the client IP address and its corresponding fingerprint. In ingress router, client puzzle is placed. For each request, the puzzle issuer provides a puzzle which the source has to solve. Our design has the following advantages over prior approaches, 1) Reduce the network traffic, as we place a client puzzle at the ingress router. 2) Mapping table at the server is lightweight and moderate.

Effect of Planting Density on Yield and Yield Components of Safflower Cultivars in Spring Planting

This study carried out to determine the effect of plant densities on some agronomic characteristics of four safflower cultivars in spring planting. The experiment was conducted at Yazd, Iran- using a factorial in a randomized complete block design with four replications. Cultivars were including Arak, IL, Asteria and Local and plant densities were 10, 13.3, 20 and 40 plant/m2. Number of seeds/head, number of heads/plant, HI, 1000-seed weight and seed yield significantly decreased as planting density increased. With increasing planting density, LAI, plant height, first branch height and biological yield increased. The highest seed yield was obtained in 13.3 plant/m2 (2167 kg/ha). There were significant differences between cultivars. Local cv. had higher seed yield than the other cultivars mainly due to higher heads/plant and seeds/head.

Hydrogen from Waste Tyres

Hydrogen is regarded to play an important role in future energy systems because it can be produced from abundant resources and its combustion only generates water. The disposal of waste tyres is a major problem in environmental management throughout the world. The use of waste materials as a source of hydrogen is particularly of interest in that it would also solve a waste treatment problem. There is much interest in the use of alternative feedstocks for the production of hydrogen since more than 95% of current production is from fossil fuels. The pyrolysis of waste tyres for the production of liquid fuels, activated carbons and gases has been extensively researched. However, combining pyrolysis with gasification is a novel process that can gasify the gaseous products from pyrolysis. In this paper, an experimental investigation into the production of hydrogen and other gases from the bench scale pyrolysis-gasification of tyres has been investigated. Experiments were carried using a two stage system consisting of pyrolysis of the waste tyres followed by catalytic steam gasification of the evolved gases and vapours in a second reactor. Experiments were conducted at a pyrolysis temperature of 500 °C using Ni/Al2O3 as a catalyst. The results showed that there was a dramatic increase in gas yield and the potential H2 production when the gasification temperature was increased from 600 to 900 oC. Overall, the process showed that high yields of hydrogen can be produced from waste tyres.

The Implicit Methods for the Study of Tolerance

Tolerance is a tool for achieving a social cohesion, particularly, among individuals and groups with different values. The aim is to study the characteristics of the ethnic tolerance, the inhabitants of Latvia. The ethnic tolerance is taught as a set of conscious and unconscious orientations of the individual in social interaction and inter-ethnic communication. It uses the tools of empirical studies of the ethnic tolerance which allows to identify the explicitly and implicitly levels of the emotional component of Latvia's residents. Explicit measurements were made using the techniques of self-report which revealed the index of the ethnic tolerance and the ethnic identity of the participants. The implicit component was studied using methods based on the effect of the emotional priming. During the processing of the results, there were calculated indicators of the positive and negative implicit attitudes towards members of their own and other ethnicity as well as the explicit parameters of the ethnic tolerance and the ethnic identity of Latvia-s residents. The implicit measurements of the ratio of neighboring ethnic groups against each other showed a mutual negative attitude whereas the explicit measurements indicate a neutral attitude. The data obtained contribute to a further study of the ethnic tolerance of Latvia's residents.

Understanding Work Integrated Learning in ICT: A Systems Perspective

Information and communication technology (ICT) is essential to the operation of business, and create many employment opportunities. High volumes of students graduate in ICT however students struggle to find job placement. A discrepancy exists between graduate skills and industry skill requirements. To address the need for ICT skills required, universities must create programs to meet the demands of a changing ICT industry. This requires a partnership between industry, universities and other stakeholders. This situation may be viewed as a critical systems thinking problem situation as there are various role players each with their own needs and requirements. Jackson states a typical critical systems methods has a pluralistic nature. This paper explores the applicability and suitability of Maslow and Dooyeweerd to guide understanding and make recommendations for change in ICT WIL, to foster an all-inclusive understanding of the situation by stakeholders. The above methods provide tools for understanding softer issues beyond the skills required. The study findings suggest that besides skills requirements, a deeper understanding and empowering students from being a student to a professional need to be understood and addressed.

Socio-Demographic Status and Arrack Drinking Patterns among Muslim, Hindu, Santal and Oraon Communities in Rasulpur Union,Bangladesh: A Cross-Cultural Perspective

Arrack is one of the forms of alcoholic beverage or liquor which is produced from palm or date juice and commonly consumed by the lower social class of all religious/ethnic communities in the north-western villages of Bangladesh. The purpose of the study was to compare arrack drinking patterns associated with socio-demographic status among the Muslim, Hindu, Santal, and Oraon communities in the Rasulpur union of Bangladesh. A total of 391 respondents (Muslim n-109, Hindu n-103, Santal n-89, Oraon n-90) selected by cluster random sampling were interviewed by ADP (Arrack Drinking Pattern) questionnaire. The results of Pearson Chi-Squire test revealed that arrack drinking patterns were significantly differed among the Muslim, Hindu, Santal, and Oraon communities- drinkers. In addition, the results of Spearman-s bivariate correlation coefficients also revealed that sociodemographic characteristics of the communities- drinkers were the significantly positive and negative associations with the arrack drinking patterns in the Rasulpur union, Bangladesh. The study suggests that further cross-cultural researches should be conducted on the consequences of arrack drinking patterns on the communities- drinkers.

Heat Release Performance of Swaged- and Extruded-Type Heat Sink Used in Industrial Inverter

In this experiment, we investigated the performance of two types of heat sink, swaged- and extruded-type, used in the inverter of industrial electricity generator. The swaged-type heat sink has 62 fins, and the extruded-type has 38 fins having the same dimension as that of the swaged-type. But the extruded-type heat sink maintains the same heat transfer area by the laterally waved surface which has 1 mm in radius. As a result, the swaged- and extruded-type heat sinks released 71% and 64% of the heat incoming to the heat sink, respectively. The other incoming heat were naturally convected and radiated to the ambient. In spite of 40% decrease in number of fins, the heat release performance of the extruded-type heat sink was lowered only 7% than that of the swaged-type. We believe that, this shows the increment of effective heat transfer area by the laterally waved surface of fins and the better heat transfer property of the extruded-type heat sink.

Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.

Recognition of Noisy Words Using the Time Delay Neural Networks Approach

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.