Agent/Group/Role Organizational Model to Simulate an Industrial Control System

The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.

A Modularized Design for Multi-Drivers Off-Road Vehicle Driving-Line and its Performance Assessment

Modularized design approach can facilitate the modeling of complex systems and support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Therefore it can improve the design efficiency and simplify the solving complicated problem. Multi-drivers off-road vehicle is comparatively complicated. Driving-line is an important core part to a vehicle; it has a significant contribution to the performance of a vehicle. Multi-driver off-road vehicles have complex driving-line, so its performance is heavily dependent on the driving-line. A typical off-road vehicle-s driving-line system consists of torque converter, transmission, transfer case and driving-axles, which transfer the power, generated by the engine and distribute it effectively to the driving wheels according to the road condition. According to its main function, this paper puts forward a modularized approach for designing and evaluation of vehicle-s driving-line. It can be used to effectively estimate the performance of driving-line during concept design stage. Through appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to the practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-drivers off-road vehicle.

Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.