Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor

In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.

<p>[1] A. K. Athanas, N. McCormick. 2013. Clean energy that safeguards ecosystems and livehoods &ndash; integrated assessments to unleash full sustainable potential for renewable energy. Renewable Energy 49:25-28. [2] N. D. Kim, H. J. Yun, I. K. Song, J. H. Yi. 2011. Preparation and characterization of nanostructured Mn oxide by an ethanol-based precipitation method for pseudocapacitor applications. Scripta Materialia 65: 448-451. [3] B. E. Conway, V. Birss, and J. Wojtowicz. 1997. The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources 66:1-14. [4] S. W. Zhang and G. Z. Chen. 2008. Manganese oxide based materials for supercapacitors. Energy Materials: Materials Science and Engineering for Energy Systems 3:186-200. [5] V. D. Patake, C. D. Lokhande. 2008. Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application. Applied Surface Science 254: 2820-2824. [6] Y. Liu, Y. Zhang, G. H. Ma, Z. Wang, K. Y. Liu, H. T. Liu. 2013. Ethylene glycol reduced graphene oxide/polypyrole composite for supercapacitor. Electrochemical Acta 88: 519-525. [7] T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Belanger. 2005. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Applied Physics A 82: 599-606. [8] S. L. Zhang, Y. M. Li, N. Pan. 2012. Graphene based supercapacito fabricated by vacuum filtration deposition. Journal of Power sources 206: 476-482. [9] H. Kim and B. N. Popov.2002. Characterization of hydrous ruthenium oxide / carbon nanocomposite supercapacitors prepared by a colloidal method. Journal of Power Sources 104:52-61. [10] C.C.Hu and W.C.Chen.2004. Effects of substrates on the capacitive performance of RuOx&middot;nH2O and activated carbon &ndash; RuOx electrodes for supercapacitors. Electrochimica Acta 49: 3469-3477. [11] C.C.Hu, M.J.Liu, and K.H.Chang. 2007. Anodic deposition of hydrous ruthenium oxide for supercapacitors. Journal of Power Sources 163:1126-1131. [12] P. Simon and Y. Gogotsi. 2008. Materials for electrochemical capacitors. Nature Materials 7:845-854. [13] X. Du, C. Wang, M. Chen, Y. Jiao, and J. Wang. 2009. Electrochemical Performances of Nanoparticle Fe3O4 / Activated Carbon Supercapacitor Using KOH Electrolyte Solution. Journal of Physical Chemistry C 113: 2643-2646. [14] Z. H. Gao, H. Zhang, G. P. Cao, M. F. Han, Y. S. Yang. 2013. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochemica Acta 87: 375-380. [15] G. H. Yuan, Z. H. Jiang, A. Aramata, and Y. Z. Gao. 2013. Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochemica Acta 92: 197-204. [16] V. Ganesh, S. Pitchumani, and V. Lakshminarayanan. 2006. New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. Journal of Power Sources 158: 1523-1532. [17] J. Yeong, K. Liang, K. Hyeok, and Y. Hee. 2005. Nickel oxide / carbon nanotubes nanocomposite for electrochemical capacitance. Synthetic metals 150: 153-157. [18] J. Y. Cao, Y. M. Wang, Y. Zhou, J. H. Ouyang D. C. Jia, L. X. Guo. 2013. High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. Journal of Electroanalytical Chemistry 689: 201-206. [19] N. Nagarajan, H. Humadi, and I. Zhitomirsky. 2006. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochimica Acta 51: 3039-3045. [20] T. Brousse and J. W. Long. 2008. Manganese Oxides : Battery Materials Make the Leap to Electrochemical Capacitors. Interface: 49-52. [21] K. Karthikeyan, S. Amaresh, D. Kalpana, R. Kalai Selvan, Y. S. Lee. 2012. Electrochemical supercapacitor studies of hierarchical structured Co2+-substituted SnO2 nanoparticles by a hydrothermal method. Journal of Physics and Chemistry of Solids 73: 363-367. [22] S. N. Pusawale, P. R. Deshmukh, C. D. Lokhande. 2011. Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Applied Surface Science 257: 9498-9502. [23] T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, and Z. Sun. 2010. Electrochemical behaviours of graphene &ndash; ZnO and graphene &ndash; SnO2 composite films for supercapacitors. Electrochimica Acta 55: 4170-4173. [24] N. Nagarajan and I. Zhitomirsky. 2006. Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. Journal of Applied Electrochemistry 36: 1399-1405. [25] K.Y. Xie, J. Li, Y. Q. Lai, W. Lu, Z. A. Zhang, Y. X .Liu, L. M. Zhou, H. T. Huang. 2011. Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochemistry Communications 13: 657-660. [26] M. Mallouki, F. Tran-Van, C. Sarrazin, P. Simon, B. Daffos, A. De, C. Chevrot, J. Fauvarque. 2006. Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage. Journal of Solid State Electrochemistry 11: 398-406. [27] N. L. Wu, S. L. Wang, and C. Y. Han. 2003. Electrochemical capacitor of magnetite in aqueous electrolytes. Journal of Power Sources 113: 173-178. [28] J. Chen, K. Huang, and S. Liu. 2009. Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochimica Acta, vol. 55: 1-5. [29] T. Brousse and D. Belanger. 2003. A Hybrid Fe3O4-MnO2 Capacitor in Mild Aqueous Electrolyte. Electrochemical and Solid-State Letters 6: A244-A248. [30] D. P. Dubal, W. B. Kim, and C. D. Lokhande. 2012. Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application. Journal of Physics and Chemistry of Solids 73: 18-24.</p>