Effects of Different Plant Densities on the Yield and Quality of Second Crop Sesame

Sesame is one of the oldest and most important oil crops as main crop and second crop agriculture. This study was carried out to determine the effects of different inter- and intra-row spacings on the yield and yield components on second crop sesame; was set up in Antalya West Mediterranean Agricultural Research Institue in 2009. Muganlı 57 sesame cultivar was used as plant material. The field experiment was set up in a split plot design and row spacings (30, 40, 50, 60 and 70 cm) were assigned to the main plots and and intra-row spacings (5, 10, 20 and 30 cm) were assigned to the subplots. Seed yield, oil ratio, oil yield, protein ratio and protein yield were investigated. In general, wided inter row spacings and intra-row spacings, resulted in decreased seed yield, oil yield and protein yield. The highest seed yield, oil yield and protein yield (respectively, 1115.0 kg ha-1, 551.3 kg ha-1, 224.7 kg ha-1) were obtained from 30x5 cm plant density while the lowest seed yield, oil yield and protein yield (respectively, 677.0 kg ha-1, 327.0 kg ha-1, 130.0 kg ha-1) were recorded from 70x30 cm plant density. As a result, in terms of oil yield for second crop sesame agriculture, 30 cm row spacing, and 5 cm intra row spacing are the most suitable plant densities.

Simulation and Analysis of the Shift Process for an Automatic Transmission

The automatic transmission (AT) is one of the most important components of many automobile transmission systems. The shift quality has a significant influence on the ride comfort of the vehicle. During the AT shift process, the joint elements such as the clutch and bands engage or disengage, linking sets of gears to create a fixed gear ratio. Since these ratios differ between gears in a fixed gear ratio transmission, the motion of the vehicle could change suddenly during the shift process if the joint elements are engaged or disengaged inappropriately, additionally impacting the entire transmission system and increasing the temperature of connect elements.The objective was to establish a system model for an AT powertrain using Matlab/Simulink. This paper further analyses the effect of varying hydraulic pressure and the associated impact on shift quality during both engagment and disengagement of the joint elements, proving that shift quality improvements could be achieved with appropriate hydraulic pressure control.

Study on the Effect of Weight Percentage Variation and Size Variation of Magnesium Ferrosilicon Added, Gating System Design and Reaction Chamber Design on Inmold Process

This research focuses on the effect of weight percentage variation and size variation of MgFeSi added, gating system design and reaction chamber design on inmold process. By using inmold process, well-known problem of fading is avoided because the liquid iron reacts with magnesium in the mold and not, as usual, in the ladle. During the pouring operation, liquid metal passes through the chamber containing the magnesium, where the reaction of the metal with magnesium proceeds in the absence of atmospheric oxygen [1].In this paper, the results of microstructural characteristic of ductile iron on this parameters are mentioned. The mechanisms of the inmold process are also described [2]. The data obtained from this research will assist in producing the vehicle parts and other machinery parts for different industrial zones and government industries and in transferring the technology to all industrial zones in Myanmar. Therefore, the inmold technology offers many advantages over traditional treatment methods both from a technical and environmental, as well as an economical point of view. The main objective of this research is to produce ductile iron castings in all industrial sectors in Myanmar more easily with lower costs. It will also assist the sharing of knowledge and experience related to the ductile iron production.

Numerical Analysis of Flow through Abrasive Water Suspension Jet: The Effect of Garnet, Aluminum Oxide and Silicon Carbide Abrasive on Skin Friction Coefficient Due To Wall Shear and Jet Exit Kinetic Energy

It is well known that the abrasive particles in the abrasive water suspension has significant effect on the erosion characteristics of the inside surface of the nozzle. Abrasive particles moving with the flow cause severe skin friction effect, there by altering the nozzle diameter due to wear which in turn reflects on the life of the nozzle for effective machining. Various commercial abrasives are available for abrasive water jet machining. The erosion characteristic of each abrasive is different. In consideration of this aspect, in the present work, the effect of abrasive materials namely garnet, aluminum oxide and silicon carbide on skin friction coefficient due to wall shear stress and jet kinetic energy has been analyzed. It is found that the abrasive material of lower density produces a relatively higher skin friction effect and higher jet exit kinetic energy.

Optimization of the Structures of the Electric Feeder Systems of the Oil Pumping Plants in Algeria

In Algeria, now, the oil pumping plants are fed with electric power by independent local sources. This type of feeding has many advantages (little climatic influence, independent operation). However it requires a qualified maintenance staff, a rather high frequency of maintenance and repair and additional fuel costs. Taking into account the increasing development of the national electric supply network (Sonelgaz), a real possibility of transfer of the local sources towards centralized sources appears.These latter cannot only be more economic but more reliable than the independent local sources as well. In order to carry out this transfer, it is necessary to work out an optimal strategy to rebuilding these networks taking in account the economic parameters and the indices of reliability.

Study of Natural Convection in a Triangular Cavity Filled with Water: Application of the Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) with double populations is applied to solve the steady-state laminar natural convective heat transfer in a triangular cavity filled with water. The bottom wall is heated, the vertical wall is cooled, and the inclined wall is kept adiabatic. The buoyancy effect was modeled by applying the Boussinesq approximation to the momentum equation. The fluid velocity is determined by D2Q9 LBM and the energy equation is discritized by D2Q4 LBM to compute the temperature field. Comparisons with previously published work are performed and found to be in excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number from  to  and the inclination angle from 0° to 360°. Flow and thermal fields were exhibited by means of streamlines and isotherms. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.  

Variance Based Component Analysis for Texture Segmentation

This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA.

Detecting and Measuring Fabric Pills Using Digital Image Analysis

In this paper a novel method was presented for evaluating the fabric pills using digital image processing techniques. This work provides a novel technique for detecting pills and also measuring their heights, surfaces and volumes. Surely, measuring the intensity of defects by human vision is an inaccurate method for quality control; as a result, this problem became a motivation for employing digital image processing techniques for detection of defects of fabric surface. In the former works, the systems were just limited to measuring of the surface of defects, but in the presented method the height and the volume of defects were also measured, which leads to a more accurate quality control. An algorithm was developed to first, find pills and then measure their average intensity by using three criteria of height, surface and volume. The results showed a meaningful relation between the number of rotations and the quality of pilled fabrics.

Impacts of the Courtyard with Glazed Roof on House Winter Thermal Conditions

The 'wind-rain' house has a courtyard with glazed roof, which allows more direct sunlight to come into indoor spaces during the winter. The glazed roof can be partially opened or closed and automatically controlled to provide natural ventilation in order to adjust for indoor thermal conditions and the roof area can be shaded by reflective insulation materials during the summer. Two field studies for evaluating indoor thermal conditions of the two 'windrain' houses have been carried out by author in 2009 and 2010. Indoor and outdoor air temperature and relative humidity adjacent to floor and ceiling of the two sample houses were continuously tested at 15-minute intervals, 24 hours a day during the winter months. Based on field study data, this study investigates relationships between building design and indoor thermal condition of the 'windrain' house to improve the future house design for building thermal comfort and energy efficiency

Solver for a Magnetic Equivalent Circuit and Modeling the Inrush Current of a 3-Phase Transformer

Knowledge about the magnetic quantities in a magnetic circuit is always of great interest. On the one hand, this information is needed for the simulation of a transformer. On the other hand, parameter studies are more reliable, if the magnetic quantities are derived from a well established model. One possibility to model the 3-phase transformer is by using a magnetic equivalent circuit (MEC). Though this is a well known system, it is often not an easy task to set up such a model for a large number of lumped elements which additionally includes the nonlinear characteristic of the magnetic material. Here we show the setup of a solver for a MEC and the results of the calculation in comparison to measurements taken. The equations of the MEC are based on a rearranged system of the nodal analysis. Thus it is possible to achieve a minimum number of equations, and a clear and simple structure. Hence, it is uncomplicated in its handling and it supports the iteration process. Additional helpful tasks are implemented within the solver to enhance the performance. The electric circuit is described by an electric equivalent circuit (EEC). Our results for the 3-phase transformer demonstrate the computational efficiency of the solver, and show the benefit of the application of a MEC.

A Rough-set Based Approach to Design an Expert System for Personnel Selection

Effective employee selection is a critical component of a successful organization. Many important criteria for personnel selection such as decision-making ability, adaptability, ambition, and self-organization are naturally vague and imprecise to evaluate. The rough sets theory (RST) as a new mathematical approach to vagueness and uncertainty is a very well suited tool to deal with qualitative data and various decision problems. This paper provides conceptual, descriptive, and simulation results, concentrating chiefly on human resources and personnel selection factors. The current research derives certain decision rules which are able to facilitate personnel selection and identifies several significant features based on an empirical study conducted in an IT company in Iran.

An Improved Quality Adaptive Rate Filtering Technique Based on the Level Crossing Sampling

Mostly the systems are dealing with time varying signals. The Power efficiency can be achieved by adapting the system activity according to the input signal variations. In this context an adaptive rate filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by following the input signal local variations. Thus, it correlates the processing activity with the signal variations. Interpolation is required in the proposed technique. A drastic reduction in the interpolation error is achieved by employing the symmetry during the interpolation process. Processing error of the proposed technique is calculated. The computational complexity of the proposed filtering technique is deduced and compared to the classical one. Results promise a significant gain of the computational efficiency and hence of the power consumption.

Value Stream Oriented Inventory Management

Producing companies aspire to high delivery availability despite appearing disruptions. To ensure high delivery availability safety stocksare required. Howeversafety stock leads to additional capital commitment and compensates disruptions instead of solving the reasons.The intention is to increase the stability in production by configuring the production planning and control systematically. Thus the safety stock can be reduced. The largest proportion of inventory in producing companies is caused by batch inventory, schedule deviations and variability of demand rates.These reasons for high inventory levels can be reduced by configuring the production planning and control specifically. Hence the inventory level can be reduced. This is enabled by synchronizing the lot size straightening the demand as well as optimizing the releasing order, sequencing and capacity control.

Granulation using Clustering and Rough Set Theory and its Tree Representation

Granular computing deals with representation of information in the form of some aggregates and related methods for transformation and analysis for problem solving. A granulation scheme based on clustering and Rough Set Theory is presented with focus on structured conceptualization of information has been presented in this paper. Experiments for the proposed method on four labeled data exhibit good result with reference to classification problem. The proposed granulation technique is semi-supervised imbibing global as well as local information granulation. To represent the results of the attribute oriented granulation a tree structure is proposed in this paper.

Instability of Ties in Compression

Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis.

Photodegradation of Optically Trapped Polystyrene Beads at 442 nm

Polystyrene particles of different sizes are optically trapped with a gaussian beam from a He-Cd laser operating at 442 nm. The particles are observed to exhibit luminescence after a certain trapping time followed by an escape from the optical trap. The observed luminescence is explained in terms of the photodegradation of the polystyrene backbone. It is speculated that these chemical modifications also play a role for the escape of the particles from the trap. Variations of the particle size and the laser power show that these parameters have a great influence on the observed phenomena.

Dynamic Action Induced By Walking Pedestrian

The main focus of this paper is on the human induced forces. Almost all existing force models for this type of load (defined either in the time or frequency domain) are developed from the assumption of perfect periodicity of the force and are based on force measurements conducted on rigid (i.e. high frequency) surfaces. To verify the different authors conclusions the vertical pressure measurements invoked during the walking was performed, using pressure gauges in various configurations. The obtained forces are analyzed using Fourier transformation. This load is often decisive in the design of footbridges. Design criteria and load models proposed by widely used standards and other researchers were introduced and a comparison was made.

En-Face Optical Coherence Tomography Combined with Fluorescence in Material Defects Investigations for Ceramic Fixed Partial Dentures

Optical Coherence Tomography (OCT) combined with the Confocal Microscopy, as a noninvasive method, permits the determinations of materials defects in the ceramic layers depth. For this study 256 anterior and posterior metal and integral ceramic fixed partial dentures were used, made with Empress (Ivoclar), Wollceram and CAD/CAM (Wieland) technology. For each investigate area 350 slices were obtain and a 3D reconstruction was perform from each stuck. The Optical Coherent Tomography, as a noninvasive method, can be used as a control technique in integral ceramic technology, before placing those fixed partial dentures in the oral cavity. The purpose of this study is to evaluate the capability of En face Optical Coherence Tomography (OCT) combined with a fluorescent method in detection and analysis of possible material defects in metalceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

Methods for Manufacture of Corrugated Wire Mesh Laminates

Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.

A Simulation Model for Bid Price Decision Making

In Lebanon, public construction projects are awarded to the contractor submitting the lowest bid price based on a competitive bidding process. The contractor has to make a strategic decision in choosing the appropriate bid price that will offer a satisfactory profit with a greater probability to win. A simulation model for bid price decision making based on the lowest bid price evaluation is developed. The model, built using Crystal Ball decisionengineering software, considers two main factors affecting the bidding process: the number of qualified bidders and the size of the project. The validity of the model is tested on twelve separate projects. The study also shows how to use the model to conduct risk analysis and help any specific contractor to decide on his bid price with associated certainty level in a scientific method.