Designing of Full Adder Using Low Power Techniques

This paper proposes techniques like MT CMOS, POWER GATING, DUAL STACK, GALEOR and LECTOR to reduce the leakage power. A Full Adder has been designed using these techniques and power dissipation is calculated and is compared with general CMOS logic of Full Adder. Simulation results show the validity of the proposed techniques is effective to save power dissipation and to increase the speed of operation of the circuits to a large extent.

Meaningful General Education Reform: Integrating Core Curricula and Institutional Values

A central element of higher education today is the “core” or “general education” curriculum: that configuration of courses that often encompasses the essence of liberal arts education. Ensuring that such offerings reflect the mission and values of the institution is a challenge faced by most college and universities, often more than once. This paper presents an action model of program planning designed to structure the processes of developing, implementing and revising core curricula in a manner consistent with key institutional goals and objectives. Through presentation of a case study from a university in the United States, the elements of needs assessment, stakeholder investment and collaborative compromise are shown as key components of a planning strategy that can produce a general education program that is comprehensive, academically rigorous, assessable, and mission consistent. The paper concludes with recommendations for both the implementation and evaluation of such programs in practice.

Deterministic Random Number Generator Algorithm for Cryptosystem Keys

One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced, or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfill Shannon’s principle of “confusion and diffusion”. ASCII code characters were utilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.

Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows obtaining a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 μm and 130 μm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for nonconductive substrates.

Motion Planning of SCARA Robots for Trajectory Tracking

The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.

Factor Resistance Comparison of a Long Shaft in 955 and 1055 John Deere Grain Combine

Transmission shafts are affected by various forces, for example, during acceleration or sudden breaks, bending during transportation, vertical forces that lead to cuts. One of the main failures in combines is breaking shaft which repairmen refer it. Structural resistance of canal against torque is very important in the beginning of the movement. For analyzing stress, a typical sample from a type of combine was selected, called JD955 combine. Long shaft in this combine was analyzed with finite element method by Ansys13 generic package under static load. Conducted analysis showed that there is a maximum stress in contact surfaces of indentations and also in place of changing diameter. Safety factor value is low in parts of the shaft and this increases the probability of failure at these points. To improve the conditions with the least cost and an approach of product improvement, using alternative alloy is important.

A Budget and Deadline Constrained Fault Tolerant Load Balanced Scheduling Algorithm for Computational Grids

Grid is an environment with millions of resources which are dynamic and heterogeneous in nature. A computational grid is one in which the resources are computing nodes and is meant for applications that involves larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Resource allocation is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user’s deadline and resource failure. This work attempts in designing a resource allocation algorithm which is cost-effective and also targets at load balancing, fault tolerance and user satisfaction by considering the above requirements. The proposed Budget Constrained Load Balancing Fault Tolerant algorithm with user satisfaction (BLBFT) reduces the schedule makespan, schedule cost and task failure rate and improves resource utilization. Evaluation of the proposed BLBFT algorithm is done using Gridsim toolkit and the results are compared with the algorithms which separately concentrates on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts.

Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three dimensional finite element models in assessing debonding damage in composite sandwich panels.

Physicians’ Knowledge and Perception of Gene Profiling in Malaysia

Availability of different genetic tests after completion of Human Genome Project increases the physicians’ responsibility to keep themselves update on the potential implementation of these genetic tests in their daily practice. However, due to numbers of barriers, still many of physicians are not either aware of these tests or are not willing to offer or refer their patients for genetic tests. This study was conducted an anonymous, cross-sectional, mailed-based survey to develop a primary data of Malaysian physicians’ level of knowledge and perception of gene profiling. Questionnaire had 29 questions. Total scores on selected questions were used to assess the level of knowledge. The highest possible score was 11. Descriptive statistics, one way ANOVA and chi-squared test was used for statistical analysis. Sixty three completed questionnaires were returned by 27 general practitioners (GPs) and 36 medical specialists. Responders’ age ranges from 24 to 55 years old (mean 30.2 ± 6.4). About 40% of the participants rated themselves as having poor level of knowledge in genetics in general whilst 60% believed that they have fair level of knowledge; however, almost half (46%) of the respondents felt that they were not knowledgeable about available genetic tests. A majority (94%) of the responders were not aware of any lab or company which is offering gene profiling services in Malaysia. Only 4% of participants were aware of using gene profiling for detection of dosage of some drugs. Respondents perceived greater utility of gene profiling for breast cancer (38%) compared to the colorectal familial cancer (3%). The score of knowledge ranged from 2 to 8 (mean 4.38 ± 1.67). Non- significant differences between score of knowledge of GPs and specialists were observed, with score of 4.19 and 4.58 respectively. There was no significant association between any demographic factors and level of knowledge. However, those who graduated between years 2001 to 2005 had higher level of knowledge. Overall, 83% of participants showed relatively high level of perception on value of gene profiling to detect patient’s risk of disease. However, low perception was observed for both statements of using gene profiling for general population in order to alter their lifestyle (25%) as well as having the full sequence of a patient genome for the purpose of determining a patient’s best match for treatment (18%). The lack of clinical guidelines, limited provider knowledge and awareness, lack of time and resources to educate patients, lack of evidence-based clinical information and cost of tests were the most barriers of ordering gene profiling mentioned by physicians. In conclusion Malaysian physicians who participate in this study had mediocre level of knowledge and awareness in gene profiling. The low exposure to the genetic questions and problems might be a key predictor of lack of awareness and knowledge on available genetic tests. Educational and training workshop might be useful in helping Malaysian physicians incorporate genetic profiling into practice for eligible patients.

Treatment of Chrome Tannery Wastewater by Biological Process - A Mini Review

Chrome tannery wastewater causes serious environmental hazard due to its high pollution potential. As a result, rigorous treatment is necessary for abatement of pollution from this type of wastewater. There are many research studies on chrome tannery wastewater treatment in the field of physical, chemical, and biological methods. In general, biological treatment process is found ineffective for direct application because of adverse effects by toxic chromium, sulphide, chloride etc. However, biological methods were employed mainly for a few sub processes generating significant amount of organic matter and without chromium, chlorides etc. In this context the present paper reviews the characteristics feature and pollution potential of wastewater generated from chrome tannery units and treatment of the same. The different biological processes used earlier and their chronological development for treatment of the chrome tannery wastewater are thoroughly reviewed in this paper. In this regard, the scope of hybrid bioreactor - an advanced technology option has also been explored, as this kind of treatment is well suited for the wastewater having inhibitory substances. 

Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.

Yawning and Cortisol as a Potential Biomarker for Early Detection of Multiple Sclerosis

Cortisol is essential to the regulation of the immune system and yawning is a pathological symptom of multiple sclerosis (MS). Electromyography activity (EMG) in the jaw muscles typically rises when the muscles are moved and with yawning is highly correlated with cortisol levels in healthy people. Saliva samples from 59 participants were collected at the start and after yawning, or at the end of the presentation of yawning-provoking stimuli, in the absence of a yawn, together with EMG data and questionnaire data: Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details. Exclusion criteria: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, stroke. Significant differences were found between the saliva cortisol samples for the yawners, t (23) = -4.263, p = 0.000, as compared with the non-yawners between rest and post-stimuli, which was nonsignificant. Significant evidence was found to support the Thompson Cortisol Hypothesis suggesting that rises in cortisol levels are associated with yawning. Further research is exploring the use of cortisol as an early diagnostic tool for MS. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.

Early-Age Structural and Thermal Performance of GGBS Concrete

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I cement replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL

In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.

The Comparison of Parental Childrearing Styles and Anxiety in Children with Stuttering and Normal Population

Family has a crucial role in maintaining the physical, social and mental health of the children. Most of the mental and anxiety problems of children reflect the complex interpersonal situations among family members, especially parents. In other words, anxiety problems of the children are correlated with deficit relationships of family members and improper childrearing styles. The parental child rearing styles leads to positive and negative consequences which affect the children’s mental health. Therefore, the present research was aimed to compare the parental childrearing styles and anxiety of children with stuttering and normal population. It was also aimed to study the relationship between parental child rearing styles and anxiety of children. The research sample included 54 boys with stuttering and 54 normal boys who were selected from the children (boys) of Tehran, Iran in the age range of 5 to 8 years in 2013. In order to collect data, Baum-rind Childrearing Styles Inventory and Spence Parental Anxiety Inventory were used. Appropriate descriptive statistical methods and multivariate variance analysis and t test for independent groups were used to test the study hypotheses. Statistical data analyses demonstrated that there was a significant difference between stuttering boys and normal boys in anxiety (t = 7.601, p< 0.01); but there was no significant difference between stuttering boys and normal boys in parental childrearing styles (F = 0.129). There was also not found significant relationship between parental childrearing styles and children anxiety (F = 0.135, p< 0.05). It can be concluded that the influential factors of children’s society are parents, school, teachers, peers and media. So, parental childrearing styles are not the only influential factors on anxiety of children, and other factors including genetic, environment and child experiences are effective in anxiety as well. Details are discussed.

Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator

This paper presents effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e., absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and be very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.

Dynamic Performance Evaluation of Distributed Generation Units in the Micro Grid

This paper presents dynamic models of distributed generators (DG) and investigates dynamic behavior of the DG units in the micro grid system. The DG units include photovoltaic and fuel cell sources. The voltage source inverter is adopted since the electronic interface which can be equipped with its controller to keep stability of the micro grid during small signal dynamics. This paper also introduces power management strategies and implements the DG load sharing concept to keep the micro grid operation in gridconnected and islanding modes of operation. The results demonstrate the operation and performance of the photovoltaic and fuel cell as distributed generators in a micro grid. The entire control system in the micro grid is developed by combining the benefits of the power control and the voltage control strategies. Simulation results are all reported, confirming the validity of the proposed control technique.

Knowledge Representation Based On Interval Type-2 CFCM Clustering

This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.

Modeling and Validation of Microspheres Generation in the Modified T-Junction Device

This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.

Cr Induced Magnetization in Zinc-Blende ZnO Based Diluted Magnetic Semiconductors

The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.