Cr Induced Magnetization in Zinc-Blende ZnO Based Diluted Magnetic Semiconductors

The capability of exploiting the electronic charge and
spin properties simultaneously in a single material has made diluted
magnetic semiconductors (DMS) remarkable in the field of
spintronics. We report the designing of DMS based on zinc-blend
ZnO doped with Cr impurity. The full potential linearized augmented
plane wave plus local orbital FP-L(APW+lo) method in density
functional theory (DFT) has been adapted to carry out these
investigations. For treatment of exchange and correlation energy,
generalized gradient approximations have been used. Introducing Cr
atoms in the matrix of ZnO has induced strong magnetic moment
with ferromagnetic ordering at stable ground state. Cr:ZnO was found
to favor the short range magnetic interaction that
reflect tendency of Cr clustering. The electronic structure of ZnO is
strongly influenced in the presence of Cr impurity atoms where
impurity bands appear in the band gap.





References:
[1] I. Appelbaum, D. Monsma, K. Russell, V. Narayanamurti, and C.
Marcus, Spin-valve photodiode. Applied physics letters, 83(18) (2003)
3737.
[2] A. Kalitsov, M. Chshiev, I. Theodonis, N. Kioussis, and W. Butler,
Spin-transfer torque in magnetic tunnel junctions. Physical Review B,
79(17) (2009) 174416.
[3] F. Junginger, M. Klaui, D. Backes, U. Rudiger, T. Kasama, R.E. Dunin-
Borkowski, L.J. Heyderman, C.A. Vaz, and J.A.C. Bland, Spin torque
and heating effects in current-induced domain wall motion probed by
transmission electron microscopy. Applied physics letters, 90(13) (2007)
132506.
[4] D. A. Allwood, G. Xiong, C. Faulkner, D. Atkinson, D. Petit, and R.
Cowburn, Magnetic domain-wall logic. Science, 309(5741) (2005) 1688.
[5] G. Schmidt, D. Ferrand, L. Molenkamp, A. Filip, and B. Van Wees,
Fundamental obstacle for electrical spin injection from a ferromagnetic
metal into a diffusive semiconductor. Physical Review B, 62(8) (2000)
R4790.
[6] S. A. Chambers and Y.K. Yoo, New materials for spintronics. MRS
bulletin, 28(10) (2003) 706.
[7] J. Furdyna, Diluted magnetic semiconductors: an interface of
semiconductor physics and magnetism. Journal of Applied Physics,
53(11) (1982) 7637.
[8] Y. Ohno, D. Young, B.a. Beschoten, F. Matsukura, H. Ohno, and D.
Awschalom, Electrical spin injection in a ferromagnetic semiconductor
heterostructure. Nature, 402(6763) (1999) 790.
[9] R. Fiederling, M. Keim, G. A. Reuscher, W. Ossau, G. Schmidt, A.
Waag, and L. Molenkamp, Injection and detection of a spin-polarized
current in a light-emitting diode. Nature, 402(6763) (1999) 787.
[10] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener model
description of ferromagnetism in zinc-blende magnetic semiconductors.
Science, 287(5455) (2000) 1019.
[11] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, An
oxide-diluted magnetic semiconductor: Mn-doped ZnO. Applied physics
letters, 75(21) (1999) 3366.
[12] M. Venkatesan, C. Fitzgerald, J. Lunney, and J. Coey, Anisotropic
ferromagnetism in substituted zinc oxide. Physical review letters, 93(17)
(2004) 177206.
[13] Y. Chen, F. Zhou, Q. Song, H. Yan, X. Yang, and T. Wei, Electronic
structure and magnetic properties of Cr monodoped and (Cr, Al)
codoped ZnO. Physica B: Condensed Matter, 407(3) (2012) 464.
[14] H.-H. Huang, C.-A. Yang, P.-H. Huang, C.-H. Lai, T. Chin, H. Huang,
H. Bor, and R. Huang, Room-temperature fabricated ZnCoO diluted
magnetic semiconductors. Journal of Applied Physics, 101(9) (2007)
09H116.
[15] Y. Chen, K. Ding, L. Yang, B. Xie, F. Song, J. Wan, G. Wang, and M.
Han, Nanoscale ferromagnetic chromium oxide film from gas-phase
nanocluster deposition. Applied physics letters, 92(17) (2008) 173112.
[16] H. Liu, X. Zhang, L. Li, Y. Wang, K. Gao, Z. Li, R. Zheng, S. Ringer,
B. Zhang, and X. Zhang, Role of point defects in room-temperature
ferromagnetism of Cr-doped ZnO. Applied physics letters, 91(7) (2007)
072511.
[17] K. Sato and H. Katayama-Yoshida, Electronic structure and
ferromagnetism of transition-metal-impurity-doped zinc oxide. Physica
B: Condensed Matter, 308 (2001) 904.
[18] B.K. Roberts, A.B. Pakhomov, V.S. Shutthanandan, and K.M. Krishnan,
Ferromagnetic Cr-doped ZnO for spin electronics via magnetron
sputtering. Journal of Applied Physics, 97(10) (2005) 10D310.
[19] K. Ueda, H. Tabata, and T. Kawai, Magnetic and electric properties of
transition-metal-doped ZnO films. Applied physics letters, 79 (2001)
988.
[20] Z. Weng, Z. Huang, and W. Lin, Magnetism of Cr-doped ZnO with
intrinsic defects. Journal of Applied Physics, 111(11) (2012) 113915.
[21] A. Ashrafi, I. Suemune, H. Kumano, and S. Tanaka, Nitrogen-doped ptype
ZnO layers prepared with H2O vapor-assisted metalorganic
molecular-beam epitaxy. Japanese journal of applied physics, 41(11B)
(2002) L1281.
[22] A. Ashrafi, I. Suemune, H. Kumano, and K. Uesugi, Growth Activation
of ZnO Layers with H2O Vapor on a‐Face of Sapphire Substrate by
Metalorganic Molecular‐Beam Epitaxy. physica status solidi (a), 192(1)
(2002) 224.
[23] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k.
An augmented plane wave plus local orbitals program for calculating
crystal properties, Vienna University of Technology, Austria, (2001).
[24] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient
approximation made simple. Physical review letters, 77(18) (1996)
3865.
[25] P. Gopal and N.A. Spaldin, Magnetic interactions in transition-metaldoped
ZnO: An ab initio study. Physical Review B, 74(9) (2006)
094418.
[26] B. Ul Haq, R. Ahmed, S. Goumri-Said, A. Shaari, and A. Afaq,
Electronic structure engineering of ZnO with the modified Becke–
Johnson exchange versus the classical correlation potential approaches.
Phase Transitions,(ahead-of-print) (2013) 1.
[27] B. Ul Haq, A. Afaq, R. Ahmed, and S. Naseem, a Comprehensive DFT
Study of Zinc Oxide in Different Phases. International Journal of
Modern Physics C, 23(06) (2012). [28] B.U. Haq, R. Ahmed, and S. Goumri-Said, Tailoring ferromagnetism in
chromium-doped zinc oxide. Materials Research Express, 1(1) (2014)
016108.
[29] B. Ul Haq, R. Ahmed, A. Shaari, A. Afaq, B. Tahir, and R. Khenata,
First-principles investigations of Mn doped zinc-blende ZnO based
magnetic semiconductors: Materials for spintronic applications.
Materials Science in Semiconductor Processing, (2014).
[30] B. Ul Haq, R. AHMED, A. SHAARI, A. AFAQ, and R. HUSSAIN, A
Study of Cr doping on the Structural and Electronic Properties of ZnO:
A First Principles Study. Sains Malaysiana, 43(6) (2014) 813.
[31] S.-M. Zhou, H.-C. Gong, B. Zhang, Z.-L. Du, X.-T. Zhang, and S.-X.
Wu, Synthesis and photoluminescence of a full zinc blende phase ZnO
nanorod array. Nanotechnology, 19(17) (2008) 175303.
[32] L. Li, W. Wang, H. Liu, X. Liu, Q. Song, and S. Ren, First principles
calculations of electronic band structure and optical properties of Crdoped
ZnO. The Journal of Physical Chemistry C, 113(19) (2009) 8460.
[33] J. Ren, H. Zhang, and X. Cheng, Electronic and magnetic properties of
all 3d transition‐metal doped ZnO monolayers. International Journal of
Quantum Chemistry, (2013).
[34] X. Li, J. Zhang, B. Xu, and K. Yao, Half-metallic ferromagnetism in Cudoped
zinc-blende ZnO from first principles study. Journal of
Magnetism and Magnetic Materials, 324(4) (2012) 584.
[35] K. Sato, P. Dederics, and H. Katayama-Yoshida, Curie temperatures of
III–V diluted magnetic semiconductors calculated from first principles.
EPL (Europhysics Letters), 61(3) (2003) 403.