Research on Hybrid Neural Network in Intrusion Detection System

This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.

Spatial Structure and Process of Arctic Warming and Land Cover Change in the Feedback Systems Framework

This paper examines the relationships between and among the various drivers of climate change that have both climatic and ecological consequences for vegetation and land cover change in arctic areas, particularly in arctic Alaska. It discusses the various processes that have created spatial and climatic structures that have facilitated observable vegetation and land cover changes in the Arctic. Also, it indicates that the drivers of both climatic and ecological changes in the Arctic are multi-faceted and operate in a system with both positive and negative feedbacks that largely results in further increases or decreases of the initial drivers of climatic and vegetation change mainly at the local and regional scales. It demonstrates that the impact of arctic warming on land cover change and the Arctic ecosystems is not unidirectional and one dimensional in nature but it represents a multi-directional and multi-dimensional forces operating in a feedback system.

A New True RMS-to-DC Converter in CMOS Technology

This paper presents a new true RMS-to-DC converter circuit based on a square-root-domain squarer/divider. The circuit is designed by employing up-down translinear loop and using of MOSFET transistors that operate in strong inversion saturation region. The converter offer advantages of two-quadrant input current, low circuit complexity, low supply voltage (1.2V) and immunity from the body effect. The circuit has been simulated by HSPICE. The simulation results are seen to conform to the theoretical analysis and shows benefits of the proposed circuit.

Performance and Availability Analyses of PV Generation Systems in Taiwan

The purpose of this article applies the monthly final energy yield and failure data of 202 PV systems installed in Taiwan to analyze the PV operational performance and system availability. This data is collected by Industrial Technology Research Institute through manual records. Bad data detection and failure data estimation approaches are proposed to guarantee the quality of the received information. The performance ratio value and system availability are then calculated and compared with those of other countries. It is indicated that the average performance ratio of Taiwan-s PV systems is 0.74 and the availability is 95.7%. These results are similar with those of Germany, Switzerland, Italy and Japan.

The Framework of Termination Mechanism in Modern Emergency Management

Termination Mechanism is an indispensible part of the emergency management mechanism. Despite of its importance in both theory and practice, it is almost a brand new field for researching. The concept of termination mechanism is proposed firstly in this paper, and the design and implementation which are helpful to guarantee the effect and integrity of emergency management are discussed secondly. Starting with introduction of the problems caused by absent termination and incorrect termination, the essence of termination mechanism is analyzed, a model based on Optimal Stopping Theory is constructed and the termination index is given. The model could be applied to find the best termination time point.. Termination decision should not only be concerned in termination stage, but also in the whole emergency management process, which makes it a dynamic decision making process. Besides, the main subjects and the procedure of termination are illustrated after the termination time point is given. Some future works are discussed lastly.

Relative Contribution of Livestock Species to Meat Supply in Bauchi Metropolis, Bauchi, Nigeria

Primary and secondary data from the Bauchi abattoir were utilized to determine the relative contributions of different livestock species to meat supply in Bauchi Metropolis. Daily livestock slaughter figures for five months (June – October 2011) indicated that more goats (64.0) were slaughtered than either sheep (47.3) or cattle (41.30) each day (P

Numerical Simulation of the Transient Shape Variation of a Rotating Liquid Droplet

Transient shape variation of a rotating liquid dropletis simulated numerically. The three dimensional Navier-Stokes equations were solved by using the level set method. The shape variation from the sphere to the rotating ellipsoid, and to the two-robed shapeare simulated, and the elongation of the two-robed droplet is discussed. The two-robed shape after the initial transient is found to be stable and the elongation is almost the same for the cases with different initial rotation rate. The relationship between the elongation and the rotation rate is obtained by averaging the transient shape variation. It is shown that the elongation of two-robed shape is in good agreement with the existing experimental data. It is found that the transient numerical simulation is necessary for analyzing the largely elongated two-robed shape of rotating droplet.

Contourlet versus Wavelet Transform for a Robust Digital Image Watermarking Technique

In this paper, a watermarking algorithm that uses the wavelet transform with Multiple Description Coding (MDC) and Quantization Index Modulation (QIM) concepts is introduced. Also, the paper investigates the role of Contourlet Transform (CT) versus Wavelet Transform (WT) in providing robust image watermarking. Two measures are utilized in the comparison between the waveletbased and the contourlet-based methods; Peak Signal to Noise Ratio (PSNR) and Normalized Cross-Correlation (NCC). Experimental results reveal that the introduced algorithm is robust against different attacks and has good results compared to the contourlet-based algorithm.

A Descent-projection Method for Solving Monotone Structured Variational Inequalities

In this paper, a new descent-projection method with a new search direction for monotone structured variational inequalities is proposed. The method is simple, which needs only projections and some function evaluations, so its computational load is very tiny. Under mild conditions on the problem-s data, the method is proved to converges globally. Some preliminary computational results are also reported to illustrate the efficiency of the method.

Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process

The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.

Antinociceptive and Anti-inflammatory Effects of Hydroalcohol Extract of Vitex agnus castus Fruit

In present study the effects of anti-inflammatory and antinociceptive of vitex hydro-alcoholic extract were evaluated on male mice. In inflammatory test mice were divided into 7 groups: first group was control. The second group, positive control group, received dexamethasone (15 mg/kg) and the other five groups received different doses of hydroalcohol extract of Vitex fruit (265, 365, 465, 565, and 665 mg/kg). The inflammation was caused by xylene-induced ear edema. Formalin test was used for evaluation of antinociceptive effect of extract. In this test, mice were divided into 7 groups: control, morphine (10mg/kg) as positive control group, and Vitex extract groups ((265, 365, 465, 565, and 665 mg/kg). All drugs were administered intrapritoneally, 30 min before each test. The data were analyzed using one-way ANOVA followed by Tukey-kramer multiple comparison test. Results have shown significant antiinflammatory effects of extract at all dosed as compared with control (P

On the Wave Propagation in Layered Plates of General Anisotropic Media

Analysis for the propagation of elastic waves in arbitrary anisotropic plates is investigated, commencing with a formal analysis of waves in a layered plate of an arbitrary anisotropic media, the dispersion relations of elastic waves are obtained by invoking continuity at the interface and boundary of conditions on the surfaces of layered plate. The obtained solutions can be used for material systems of higher symmetry such as monoclinic, orthotropic, transversely isotropic, cubic, and isotropic as it is contained implicitly in the analysis. The cases of free layered plate and layered half space are considered separately. Some special cases have also been deduced and discussed. Finally numerical solution of the frequency equations for an aluminum epoxy is carried out, and the dispersion curves for the few lower modes are presented. The results obtained theoretically have been verified numerically and illustrated graphically.

Solid State Fermentation of Cassava Peel with Trichoderma viride (ATCC 36316) for Protein Enrichment

Solid state fermentation of cassava peel with emphasis on protein enrichment using Trichoderma viride was evaluated. The effect of five variables: moisture content, pH, particle size (p), nitrogen source and incubation temperature; on the true protein and total sugars of cassava peel was investigated. The optimum fermentation period was established to be 8 days. Total sugars were 5-fold higher at pH 6 relative to pH 4 and 7-fold higher when cassava peels were fermented at 30oC relative to 25oC as well as using ammonium sulfate as the nitrogen source relative to urea or a combination of both. Total sugars ranged between 123.21mg/g at 50% initial moisture content to 374mg/g at 60% and from 190.59mg/g with particle size range of 2.00>p>1.41mm to 310.10mg/g with 4.00>p>3.35mm.True protein ranged from 229.70 mg/g at pH 4 to 284.05 mg/g at pH 6; from 200.87 mg/g with urea as nitrogen source and to 254.50mg/g with ammonium sulfate; from 213.82mg/g at 50% initial moisture content to 254.50mg/g at 60% moisture content, from 205.75mg/g in cassava peel with 5.6>p> 4.75mm to 268.30 in cassava peel with particle size 4.00>p>3.35mm, from 207.57mg/g at 25oC to 254.50mg/g at 30oC Cassava peel with particle size 4.00>p>3.35 mm and initial moisture content of 60% at pH 6.0, 30oC incubation temperature with ammonium sulfate (10g N / kg substrate) was most suitable for protein enrichment with Trichoderma viride. Crude protein increased from 4.21 % in unfermented cassava peel samples to 10.43 % in fermented samples.

The Effect of Mixture Velocity and Droplet Diameter on Oil-water Separator using Computational Fluid Dynamics (CFD)

The characteristics of fluid flow and phase separation in an oil-water separator were numerically analysed as part of the work presented herein. Simulations were performed for different velocities and droplet diameters, and the way this parameters can influence the separator geometry was studied. The simulations were carried out using the software package Fluent 6.2, which is designed for numerical simulation of fluid flow and mass transfer. The model consisted of a cylindrical horizontal separator. A tetrahedral mesh was employed in the computational domain. The condition of two-phase flow was simulated with the two-fluid model, taking into consideration turbulence effects using the k-ε model. The results showed that there is a strong dependency of phase separation on mixture velocity and droplet diameter. An increase in mixture velocity will bring about a slow down in phase separation and as a consequence will require a weir of greater height. An increase in droplet diameter will produce a better phase separation. The simulations are in agreement with results reported in literature and show that CFD can be a useful tool in studying a horizontal oilwater separator.

A Study of the Garbage Enzyme's Effects in Domestic Wastewater

“Garbage enzyme", a fermentation product of kitchen waste, water and brown sugar, is claimed in the media as a multipurpose solution for household and agricultural uses. This study assesses the effects of dilutions (5% to 75%) of garbage enzyme in reducing pollutants in domestic wastewater. The pH of the garbage enzyme was found to be 3.5, BOD concentration about 150 mg/L. Test results showed that the garbage enzyme raised the wastewater-s BOD in proportion to its dilution due to its high organic content. For mixtures with more than 10% garbage enzyme, its pH remained acidic after the 5-day digestion period. However, it seems that ammonia nitrogen and phosphorus could be removed by the addition of the garbage enzyme. The most economic solution for removal of ammonia nitrogen and phosphorus was found to be 9%. Further tests are required to understand the removal mechanisms of the ammonia nitrogen and phosphorus.

Product-Based Industrial Information Systems (Application to the Steel Industry)

This paper shows a simple and effective approach to the design and implementation of Industrial Information Systems (IIS) oriented to control the characteristics of each individual product manufactured in a production line and also their manufacturing conditions. The particular products considered in this work are large steel strips that are coiled just after their manufacturing. However, the approach is directly applicable to coiled strips in other industries, like paper, textile, aluminum, etc. These IIS provide very detailed information of each manufactured product, which complement the general information managed by the ERP system of the production line. In spite of the high importance of this type of IIS to guarantee and improve the quality of the products manufactured in many industries, there are very few works about them in the technical literature. For this reason, this paper represents an important contribution to the development of this type of IIS, providing guidelines for their design, implementation and exploitation.

Structural Funds of Polish Agriculture

The research objective of the project and article “The impact of Structural Funds on the growth of competitiveness of Polish agriculture" is to assess competitiveness of regions in Poland from the perspective of Polish agriculture by analysing the efficiency of the use of Structural Funds, the economic procedure of their distribution and the regulatory and organisational framework under the Rural Development Programme (RDP). It must be stressed that defining the scope of research in the above manner limits the analysis only to the part of Structural Funds directed to support Polish agriculture.

Synthesis and Characterization of PEG-Silane Functionalized Iron Oxide Nanoparticle as MRI T2 Contrast Agent

Iron oxide nanoparticle was synthesized by reactive-precipitation method followed by high speed centrifuge and phase transfer in order to stabilized nanoparticles in the solvent. Particle size of SPIO was 8.2 nm by SEM, and the hydraulic radius was 17.5 nm by dynamic light scattering method. Coercivity and saturated magnetism were determined by VSM (vibrating sample magnetometer), coercivity of nanoparticle was lower than 10 Hc, and the saturated magnetism was higher than 65 emu/g. Stabilized SPIO was then transferred to aqueous phase by reacted with excess amount of poly (ethylene glycol) (PEG) silane. After filtration and dialysis, the SPIO T2 contrast agent was ready to use. The hydraulic radius of final product was about 70~100 nm, the relaxation rates R2 (1/T2) measured by magnetic resonance imaging (MRI) was larger than 200(sec-1).

Thermal Carpet Cloaking Achieved by Layered Metamaterial

We have devised a thermal carpet cloak theoretically and implemented in silicon using layered metamaterial. The layered metamaterial is composed of single crystalline silicon and its phononic crystal. The design is based on a coordinate transformation. We demonstrate the result with numerical simulation. Great cloaking performance is achieved as a thermal insulator is well hidden under the thermal carpet cloak. We also show that the thermal carpet cloak can even the temperature on irregular surface. Using thermal carpet cloak to manipulate the heat conduction is effective because of its low complexity.