Thermal Carpet Cloaking Achieved by Layered Metamaterial

We have devised a thermal carpet cloak theoretically
and implemented in silicon using layered metamaterial. The layered
metamaterial is composed of single crystalline silicon and its phononic
crystal. The design is based on a coordinate transformation. We
demonstrate the result with numerical simulation. Great cloaking
performance is achieved as a thermal insulator is well hidden under the
thermal carpet cloak. We also show that the thermal carpet cloak can
even the temperature on irregular surface. Using thermal carpet cloak
to manipulate the heat conduction is effective because of its low
complexity.





References:
<p>[1] J. B. Pendry, &ldquo;Controlling Electromagnetic Fields,&rdquo; Science,vol. 312,
pp.1780, 2006.
[2] U. Leonhordt, &ldquo;Optical comformal mapping,&rdquo;Science,vol. 312, pp. 1777,
2006.
[3] M. Rahm, D.Schurig, D. A. Roberts, S. A. Cummer,D. R. Smith, and J. B.
Pendry,&rdquo;Design of electromagnetic cloaks and concentrators
usingform-invariant coordinate transformations ofMaxwell&rsquo;s equations&quot;,
Photon. Nanostruct.:Fundam. Applic.,vol. 6, pp. 87, 2008.
[4] H. Y. Chen, and C. T. Chan, &ldquo;Transformation media that rotate
electromagnetic fields,&rdquo;Appl. Phys. Lett., vol. 90, 241105, 2007.
[5] J. Li and J. B. Pendry, &ldquo;Hiding under the Carpet: A New Strategy for
Cloaking,&rdquo;Phys. Rev. Lett., vol. 101, 203901, 2008.
[6] X. L. Zhang, X. Ni, M. H. Lu, and Y. F. Chen,&ldquo;A feasible approach to
achieve acoustic carpet cloak in air,&rdquo; Phys.Lett. A, vol. 376, 493, 2012
[7] B.Popa and S. A. Cummer, &ldquo;Homogeneous and compact acoustic ground
cloaks,&rdquo; Phys. Rev. B, vol. 83, pp. 224304, 2011.
[8] S. A.Cummer and D.Schurig, &ldquo;One path to acoustic cloaking,&rdquo; New J.
Phys., vol. 9, pp. 45, 2007.
[9] S. Zhang, D. A. Genov, C. Sun, and X. Zhang, &ldquo;Cloaking of Matter
Waves,&rdquo; Phys. Rev. Lett., vol. 100, pp. 123002, 2008.
[10] G. W.Milton, M.Briane, and J. R. Willis, &ldquo;On cloaking for elasticity and
physical equations with a transformation invariant form,&rdquo; New J. Phys.,
vol. 8, pp.248, 2006.
[11] Y. A. Urzhumov and D. R. Smith, &ldquo;Fluid Flow Control with
Transformation Media,&rdquo; Phys. Rev. Lett., vol. 107, pp. 074501, 2011.
[12] S.Guenneau, C. Amra, and D. Veynante, &ldquo;Transformation
thermodynamics: cloaking and concentrating heat flux,&rdquo;Opt. Express,vol.
20, pp. 8207, 2012.
[13] P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-kady, and L. M.
Phinney, &ldquo;Origin of reduction in phonon thermal conductivity of
microporous solid,&rdquo; Appl. Phys. Lett.,vol. 95, pp. 161902, 2009.
[14] J. Callaway,&ldquo;Model for Lattice Thermal Conductivity at Low
Temperatures,&rdquo; J. Phys. Rev.,vol. 113, pp. 1046, 1959.
[15] M. G.Holland, &ldquo;Analysis of Lattice Thermal Conductivity,&rdquo; Phys.
Rev.,vol. 132, pp. 2461, 1963.
[16] D. Song and G. Chen, &ldquo;Thermal conductivity of periodic microporous
silicon films ,&rdquo;Appl. Phys. Lett., vol. 84, pp. 687,2004.
[17] P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson-III, E. A. Shaner,Z.
C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, &ldquo;Reduction in
the thermal conductivity of single crystalline,&rdquo; Nano. Lett., vol. 11, pp.
107, 2011.
[18] C. M. Reinke, M. F. Su, B. L. Davis, B. Kim, M. I. Hussein, Z. C.
Leseman, R. H. Olsson-III, and I. Ei-Kady,&ldquo;Thermal conductivity
prediction of nanoscalephononic crystal slabs using a hybrid lattice
dynamics-continuum mechanics technique,&rdquo; AIP advance, vol. 1, pp.
041403,2011.
[19] M. S. Kushwaha, P. Halevi, L.Dobrzynski, and B. Djafari-Rouhani,
&ldquo;Acoustic Band Structure of Periodic Elastic Composites,&rdquo;Phys. Rev.
Lett., vol. 71, pp. 2022,1993.</p>