On the Exact Solution of Non-Uniform Torsion for Beams with Axial Symmetric Cross-Section

In the traditional theory of non-uniform torsion the axial displacement field is expressed as the product of the unit twist angle and the warping function. The first one, variable along the beam axis, is obtained by a global congruence condition; the second one, instead, defined over the cross-section, is determined by solving a Neumann problem associated to the Laplace equation, as well as for the uniform torsion problem. So, as in the classical theory the warping function doesn-t punctually satisfy the first indefinite equilibrium equation, the principal aim of this work is to develop a new theory for non-uniform torsion of beams with axial symmetric cross-section, fully restrained on both ends and loaded by a constant torque, that permits to punctually satisfy the previous equation, by means of a trigonometric expansion of the axial displacement and unit twist angle functions. Furthermore, as the classical theory is generally applied with good results to the global and local analysis of ship structures, two beams having the first one an open profile, the second one a closed section, have been analyzed, in order to compare the two theories.

The Effects of Multipath on OFDM Systems for Broadband Power-Line Communications a Case of Medium Voltage Channel

Power-line networks are widely used today for broadband data transmission. However, due to multipaths within the broadband power line communication (BPLC) systems owing to stochastic changes in the network load impedances, branches, etc., network or channel capacity performances are affected. This paper attempts to investigate the performance of typical medium voltage channels that uses Orthogonal Frequency Division Multiplexing (OFDM) techniques with Quadrature Amplitude Modulation (QAM) sub carriers. It has been observed that when the load impedances are different from line characteristic impedance channel performance decreases. Also as the number of branches in the link between the transmitter and receiver increases a loss of 4dB/branch is found in the signal to noise ratio (SNR). The information presented in the paper could be useful for an appropriate design of the BPLC systems.

Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)

This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.

OFDM and Fingerprint Authentication for Efficient Airport Security

This paper presents an idea to improve the efficiency of security checks in airports through the active tracking and monitoring of passengers and staff using OFDM modulation technique and Finger print authentication. The details of the passenger are multiplexed using OFDM .To authenticate the passenger, the fingerprint along with important identification information is collected. The details of the passenger can be transmitted after necessary modulation, and received using various transceivers placed within the premises of the airport, and checked at the appropriate check points, thereby increasing the efficiency of checking. OFDM has been employed for spectral efficiency.

A Discrete Choice Modeling Approach to Modular Systems Design

The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.

Improvement of Stator Slot Structure based on Electro-Thermal Analysis in HV Generator

High voltage generators are being subject to higher voltage rating and are being designed to operate in harsh conditions. Stator windings are the main component of generators in which Electrical, magnetically and thermal stresses remain major failures for insulation degradation accelerated aging. A large number of generators failed due to stator winding problems, mainly insulation deterioration. Insulation degradation assessment plays vital role in the asset life management. Mostly the stator failure is catastrophic causing significant damage to the plant. Other than generation loss, stator failure involves heavy repair or replacement cost. Electro thermal analysis is the main characteristic for improvement design of stator slot-s insulation. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electro thermal performance is Finite Element Method (FEM) which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical and thermal stresses in order to increase the power of generator in the same volume of core. This paper describes the process used to perform classical design and improvement analysis of stator slot-s insulation.

Poverty Alleviation Potential of Snail Farming in Ondo State, Southwest Nigeria

The recurring decimal of rural and urban poverty in Nigeria, resulting from lack of sustainable livelihood activities by the people due to non-diversification of the economy, necessitated this study. One hundred snail farmers were randomly selected in Akure North and Akure South Local Government areas of Ondo State, Southwest Nigeria where snail farming is widely practised. Data collection was through questionnaires administration and onsite observation of farms. Data obtained were subjected to descriptive statistics, Student-s t-test and regression analysis. Cost benefit ratio (CBR) and rate of return on investment (RORI) were calculated in order to determine the poverty alleviation potentials of snail farming in the study areas. Although snail farming was profitable and viable, it was below poverty line. With time and more knowledge in its farming activities, and with more people taking to snail production, its poverty alleviation and reduction potentials will increase.

Novel Glycopolymers Containing Carbohydrate Moiety: Copolymerization and Thermal Properties

Polymers are one of the most widely used materials in our every day life. The subject of renewable resources has attracted great attention in the last period of time. New polymeric materials derived from renewable resources, like carbohydrates draw attention to public eye especially because of their biocompatibility and biodegradability. The aim of our paper was to obtain environmentally compatible polymers from monosaccharides. Novel glycopolymers based on D-glucose have been obtained from copolymerization of a new monomer carrying carbohydrate moiety with methyl methacrylate (MMA) via free radical bulk polymerization. Differential scanning calorimetry (DSC) was performed in order to study the copolymerization process of the monomer into the chosen co-monomer; the activation energy of this process was evaluated using Ozawa method. The copolymers obtained were characterized using ATR-FTIR spectroscopy. The thermal stability of the obtained products was studied by thermogravimetry (TG).

Investigation on Polymer Based Nano-Silver as Food Packaging Materials

Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based upon the relevant European safety Directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices.

Mathematical Rescheduling Models for Railway Services

This paper presents the review of past studies concerning mathematical models for rescheduling passenger railway services, as part of delay management in the occurrence of railway disruption. Many past mathematical models highlighted were aimed at minimizing the service delays experienced by passengers during service disruptions. Integer programming (IP) and mixed-integer programming (MIP) models are critically discussed, focusing on the model approach, decision variables, sets and parameters. Some of them have been tested on real-life data of railway companies worldwide, while a few have been validated on fictive data. Based on selected literatures on train rescheduling, this paper is able to assist researchers in the model formulation by providing comprehensive analyses towards the model building. These analyses would be able to help in the development of new approaches in rescheduling strategies or perhaps to enhance the existing rescheduling models and make them more powerful or more applicable with shorter computing time.

In vitro Plant Regeneration of Java Vetiver (Vetiveria zizanioides)

In vitro plant regeneration has been successfully obtained from basal shoot explant of Vetiveria zizanioides through indirect organogenesis. The explant was cultured in Murashige & Skoog’s (MS) media supplemented with 2,4-D, IAA, and kinetin in various concentrations. Callus was well induced in media supplemented with 2 ppm 2,4-D, 1 ppm IAA, and 1 ppm kinetin. This callus was then transferred to MS media supplemented with 1 - 5 ppm of BAP for shoot regeneration. The media supplemented with 3 ppm BAP was a suitable medium for shoot induction, as well as for shoot multiplication. Rooting was well developed in shoot following transferred to half MS media containing 0.2 ppm IBA. Plantlet was then transferred to husk charcoal for acclimatization, and almost all (90%) of plantlets were survived during acclimatization.

Developing Vision-Based Digital Public Display as an Interactive Media

Interactive public displays give access as an innovative media to promote enhanced communication between people and information. However, digital public displays are subject to a few constraints, such as content presentation. Content presentation needs to be developed to be more interesting to attract people’s attention and motivate people to interact with the display. In this paper, we proposed idea to implement contents with interaction elements for vision-based digital public display. Vision-based techniques are applied as a sensor to detect passers-by and theme contents are suggested to attract their attention for encouraging them to interact with the announcement content. Virtual object, gesture detection and projection installation are applied for attracting attention from passers-by. Preliminary study showed positive feedback of interactive content designing towards the public display. This new trend would be a valuable innovation as delivery of announcement content and information communication through this media is proven to be more engaging.

Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit

This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics this destroyed part is due to irreversibilities which must be determined to obtain the exergetic efficiency of the system. In the current paper a computer program has been developed using visual basic to determine the exergy destruction and the exergetic efficiencies of the components of the desalination unit at variable operation conditions such as feed water temperature, outlet air temperature, air to feed water mass ratio and salinity, in addition to cooling water mass flow rate and inlet temperature, as well as quantity of solar irradiance. The results obtained indicate that the exergy efficiency of the humidifier increases by increasing the mass ratio and decreasing the outlet air temperature. In the other hand the exergy efficiency of the condenser increases with the increase of this ratio and also with the increase of the outlet air temperature.

Effect of Rollers Differential Speed and Paddy Moisture Content on Performance of Rubber Roll Husker

A study was carried out at the Rice Research Institute of Iran (RRII) to investigate the effect of rollers differential peripheral speed of commercial rubber roll husker and paddy moisture content on the husking index and percentage of broken rice. The experiment was conducted at six levels of rollers differential speed (1.5, 2.2, 2.9, 3.6, 4.3 and 5 m/s) and three levels of paddy moisture content (8-9, 10-11 and 12-13% w.b.). Two common paddy varieties namely, Binam and Khazer, were selected for this study. Results revealed that the effect of rollers differential speed and moisture content significantly (P

Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures

In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5mm to 6.3mm seems to be higher than that when increasing it from 6.3mm to 8mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls.

Computational Prediction of Complicated Atmospheric Motion for Spinning or non- Spinning Projectiles

A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high spin and fin-stabilized projectiles via atmospheric flight to final impact point. The projectiles is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The mathematical model is based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from given initial conditions at the firing site. The projectiles maneuvering motion depends on the most significant force and moment variations, in addition to wind and gravity. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy-s book. The developed computational method gives satisfactory agreement with published data of verified experiments and computational codes on atmospheric projectile trajectory analysis for various initial firing flight conditions.

Mechanical Behaviour Analysis of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials

In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.

Wedding in Thailand: Traditional and Business

This study is purely qualitative. The objectives of this study can be identified as two main factors: traditionally explanation and economically studying. The study of weddings, both in traditional beauty and the aggressively strong competitive in the wedding business market has limited population of the study only Thailand internal wedding consumers. Focus group with the new marriage couple and in-depth interview with fully experiences wedding businessman were used. Traditionally, Thai weddings are very various; therefore, the recent patterns were briefly concluded to be processes of traditional Thai wedding will be revealed and explained then give more details in the formal procedures.  Economically, weddings business are related to many types of businesses from catering business, hospitality and tourism business, pre-wedding photography, and the complete full-serviced wedding organizer for examples. The situations, changes and obstacles of the wedding related business will be discussed.

Modeling a Multinomial Logit Model of Intercity Travel Mode Choice Behavior for All Trips in Libya

In the planning point of view, it is essential to have mode choice, due to the massive amount of incurred in transportation systems. The intercity travellers in Libya have distinct features, as against travellers from other countries, which includes cultural and socioeconomic factors. Consequently, the goal of this study is to recognize the behavior of intercity travel using disaggregate models, for projecting the demand of nation-level intercity travel in Libya. Multinomial Logit Model for all the intercity trips has been formulated to examine the national-level intercity transportation in Libya. The Multinomial logit model was calibrated using nationwide revealed preferences (RP) and stated preferences (SP) survey. The model was developed for deference purpose of intercity trips (work, social and recreational). The variables of the model have been predicted based on maximum likelihood method. The data needed for model development were obtained from all major intercity corridors in Libya. The final sample size consisted of 1300 interviews. About two-thirds of these data were used for model calibration, and the remaining parts were used for model validation. This study, which is the first of its kind in Libya, investigates the intercity traveler’s mode-choice behavior. The intercity travel mode-choice model was successfully calibrated and validated. The outcomes indicate that, the overall model is effective and yields higher precision of estimation. The proposed model is beneficial, due to the fact that, it is receptive to a lot of variables, and can be employed to determine the impact of modifications in the numerous characteristics on the need for various travel modes. Estimations of the model might also be of valuable to planners, who can estimate possibilities for various modes and determine the impact of unique policy modifications on the need for intercity travel.

The Frequency Graph for the Traveling Salesman Problem

Traveling salesman problem (TSP) is hard to resolve when the number of cities and routes become large. The frequency graph is constructed to tackle the problem. A frequency graph maintains the topological relationships of the original weighted graph. The numbers on the edges are the frequencies of the edges emulated from the local optimal Hamiltonian paths. The simplest kind of local optimal Hamiltonian paths are computed based on the four vertices and three lines inequality. The search algorithm is given to find the optimal Hamiltonian circuit based on the frequency graph. The experiments show that the method can find the optimal Hamiltonian circuit within several trials.