Inconsistency Discovery in Multiple State Diagrams

In this article, we introduce a new approach for analyzing UML designs to detect the inconsistencies between multiple state diagrams and sequence diagrams. The Super State Analysis (SSA) identifies the inconsistencies in super states, single step transitions, and sequences. Because SSA considers multiple UML state diagrams, it discovers inconsistencies that cannot be discovered when considering only a single UML state diagram. We have introduced a transition set that captures relationship information that is not specifiable in UML diagrams. The SSA model uses the transition set to link transitions of multiple state diagrams together. The analysis generates three different sets automatically. These sets are compared to the provided sets to detect the inconsistencies. SSA identifies five types of inconsistencies: impossible super states, unreachable super states, illegal transitions, missing transitions, and illegal sequences.

Heat Transfer in a Parallel-Plate Enclosure with Graded-Index Coatings on its Walls

A numerical study on the heat transfer in the thermal barrier coatings and the substrates of a parallel-plate enclosure is carried out. Some of the thermal barrier coatings, such as ceramics, are semitransparent and are of interest for high-temperature applications where radiation effects are significant. The radiative transfer equations and the energy equations are solved by using the discrete ordinates method and the finite difference method. Illustrative results are presented for temperature distributions in the coatings and the opaque walls under various heating conditions. The results show that the temperature distribution is more uniform in the interior portion of each coating away from its boundary for the case with a larger average of varying refractive index and a positive gradient of refractive index enhances radiative transfer to the substrates.

Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model

The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time  on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as  increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as  increases. Also, the slip in the thermal boundary condition increases as  decreases especially the early stage of time.

Active and Reactive Power Control of a DFIG with MPPT for Variable Speed Wind Energy Conversion using Sliding Mode Control

This paper presents the study of a variable speed wind energy conversion system based on a Doubly Fed Induction Generator (DFIG) based on a sliding mode control applied to achieve control of active and reactive powers exchanged between the stator of the DFIG and the grid to ensure a Maximum Power Point Tracking (MPPT) of a wind energy conversion system. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the PWM converter. To extract a maximum of power, the rotor side converter is controlled by using a stator flux-oriented strategy. The created decoupling control between active and reactive stator power allows keeping the power factor close to unity. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed.

Fabrication and Characterization of CdS Nanoparticles Annealed by using Different Radiations

The systematic manipulations of shapes and sizes of inorganic compounds greatly benefit the various application fields including optics, magnetic, electronics, catalysis and medicine. However shape control has been much more difficult to achieve. Hence exploration of novel method for the preparation of differently shaped nanoparticles is challenging research area. II-VI group of semiconductor cadmium sulphide (CdS) nanostructure with different morphologies (such as, acicular like, mesoporous, spherical shapes) and of crystallite sizes vary from 11 to 16 nm were successfully synthesized by chemical aqueous precipitation of Cd2+ ions with homogeneously released S2- ions from decomposition of cadmium sulphate (CdSO4) and thioacetamide (CH3CSNH2) by annealing at different radiations (microwave, ultrasonic and sunlight) with matter and systematic research has been done for various factors affecting the controlled growth rate of CdS nanoparticles. The obtained nanomaterials have been characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravometric (DSC-TGA) analysis and Scanning Electron Microscopy (SEM). The result indicates that on increasing the reaction time particle size increases but on increasing the molar ratios grain size decreases.

Authenticity Issues of Social Media: Credibility, Quality and Reality

Social media has led to paradigm shifts in ways people work and do business, interact and socialize, learn and obtain knowledge. So much so that social media has established itself as an important spatial extension of this nation-s historicity and challenges. Regardless of the enabling reputation and recommendation features through social networks embedded in the social media system, the overflow of broadcasted and publicized media contents turns the table around from engendering trust to doubting the trust system. When the trust is at doubt, the effects include deactivation of accounts and creation of multiple profiles, which lead to the overflow of 'ghost' contents (i.e. “the abundance of abandoned ships"). In most literature, the study of trust can be related to culture; hence the difference between Western-s “openness" and Eastern-s “blue-chip" concepts in networking and relationships. From a survey on issues and challenges among Malaysian social media users, 'authenticity' emerges as one of the main factors that causes and is caused by other factors. The other issue that has surfaced is credibility either in terms of message/content and source. Another is the quality of the knowledge that is shared. This paper explores the terrains of this critical space which in recent years has been dominated increasingly by, arguably, social networks embedded in the social media system, the overflow of broadcasted and publicized media content.

A Fixed Band Hysteresis Current Controller for Voltage Source AC Chopper

Most high-performance ac drives utilize a current controller. The controller switches a voltage source inverter (VSI) such that the motor current follows a set of reference current waveforms. Fixed-band hysteresis (FBH) current control has been widely used for the PWM inverter. We want to apply the same controller for the PWM AC chopper. The aims of the controller is to optimize the harmonic content at both input and output sides, while maintaining acceptable losses in the ac chopper and to control in wide range the fundamental output voltage. Fixed band controller has been simulated and analyzed for a single-phase AC chopper and are easily extended to three-phase systems. Simulation confirmed the advantages and the excellent performance of the modulation method applied for the AC chopper.

AGHAZ : An Expert System Based approach for the Translation of English to Urdu

Machine Translation (MT 3) of English text to its Urdu equivalent is a difficult challenge. Lot of attempts has been made, but a few limited solutions are provided till now. We present a direct approach, using an expert system to translate English text into its equivalent Urdu, using The Unicode Standard, Version 4.0 (ISBN 0-321-18578-1) Range: 0600–06FF. The expert system works with a knowledge base that contains grammatical patterns of English and Urdu, as well as a tense and gender-aware dictionary of Urdu words (with their English equivalents).

Evaluating some Feature Selection Methods for an Improved SVM Classifier

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

An Agent-Based Approach to Immune Modelling: Priming Individual Response

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used.

Subthreshold Circuit Performance Investigation under Temperature Variations

Ultra-low-power (ULP) circuits have received widespread attention due to the rapid growth of biomedical applications and Battery-less Electronics. Subthreshold region of transistor operation is used in ULP circuits. Major research challenge in the subthreshold operating region is to extract the ULP benefits with minimal degradation in speed and robustness. Process, Voltage and Temperature (PVT) variations significantly affect the performance of subthreshold circuits. Designed performance parameters of ULP circuits may vary largely due to temperature variations. Hence, this paper investigates the effect of temperature variation on device and circuit performance parameters at different biasing voltages in the subthreshold region. Simulation results clearly demonstrate that in deep subthreshold and near threshold voltage regions, performance parameters are significantly affected whereas in moderate subthreshold region, subthreshold circuits are more immune to temperature variations. This establishes that moderate subthreshold region is ideal for temperature immune circuits.

Academic Digital Library's Evaluation Criteria: User-Centered Approach

Academic digital libraries emerged as a result of advances in computing and information systems technologies, and had been introduced in universities and to public. As results, moving in parallel with current technology in learning and researching environment indeed offers myriad of advantages especially to students and academicians, as well as researchers. This is due to dramatic changes in learning environment through the use of digital library system which giving spectacular impact on these societies- way of performing their study/research. This paper presents a survey of current criteria for evaluating academic digital libraries- performance. The goal is to discuss criteria being applied so far for academic digital libraries evaluation in the context of user-centered design. Although this paper does not comprehensively take into account all previous researches in evaluating academic digital libraries but at least it can be a guide in understanding the evaluation criteria being widely applied.

Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies

The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.

Modeling and Analysis of SVPWM Based Dynamic Voltage Restorer

In this paper the modeling and analysis of Space Vector Pulse Width Modulation (SVPWM) based Dynamic Voltage Restorer (DVR) using PSCAD/EMTDC software will be presented in details. The simulation includes full modeling of the SVPWM technique used to control the DVR inverter. A test power system composed of three phase voltage source, sag generator, DVR and three phase resistive load is used to demonstrate restoration capability of the DVR. The simulation results of the presented DVR proved excellent voltage sag mitigation to protect sensitive loads.

An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition

This study presents an exact general solution for steady-state conductive heat transfer in cylindrical composite laminates. Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series coefficients are achieved by solving a set of equations that related to thermal boundary conditions at inner and outer of the cylinder, also related to temperature continuity and heat flux continuity between each layer. The solution of this set of equations are obtained using Thomas algorithm. In this paper, the effect of fibers- angle on temperature distribution of composite laminate is investigated under general boundary conditions. Here, we show that the temperature distribution for any composite laminates is between temperature distribution for laminates with θ = 0° and θ = 90° .

Prevention of Biofilm Formation in Urinary Catheter by Coating Enzymes/ Gentamycin/ EDTA

Urinary Tract Infections (UTI) account for an estimated 25-40% nosocomial infection, out of which 90% are associated with urinary catheter, called Catheter associated urinary tract infection (CAUTI). The microbial populations within CAUTI frequently develop as biofilms. In the present study, microbial contamination of indwelling urinary catheters was investigated. Biofilm forming ability of the isolates was determined by tissue culture plate method. Prevention of biofilm formation in the urinary catheter by Pseudomonas aeruginosa was also determined by coating the catheter with some enzymes, gentamycin and EDTA. It was found that 64% of the urinary catheters get contaminated during the course of catheterization. Of the total 6 isolates, biofilm formation was seen in 100% Pseudomonas aeruginosa and E. coli, 90% in Enterococci, 80% in Klebsiella and 66% in S. aureus. It was noted that the biofilm production by Pseudomonas was prolonged by 7 days in amylase, 8 days in protease, 6 days in lysozyme, 7days in gentamycin and 5 days in EDTA treated catheter.

Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Evolving a Fuzzy Rule-Base for Image Segmentation

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Autonomous Control of Multiple Mobile Manipulators

This paper considers the autonomous navigation problem of multiple n-link nonholonomic mobile manipulators within an obstacle-ridden environment. We present a set of nonlinear acceleration controllers, derived from the Lyapunov-based control scheme, which generates collision-free trajectories of the mobile manipulators from initial configurations to final configurations in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulators with results through computer simulations of an interesting scenario.

Detection and Pose Estimation of People in Images

Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.