Photonic Crystal Waveguide 1x3 Flexible Power Splitter for Optical Network

A compact 1x3 power splitter based on Photonic Crystal Waveguides (PCW) with flexible power splitting ratio is presented in this paper. Multimode interference coupler (MMI) is integrated with PCW. The device size reduction compared with the conventional MMI power splitter is attributed to the large dispersion of the PCW. Band Solve tool is used to calculate the band structure of PCW. Finite Difference Time Domain (FDTD) method is adopted to simulate the relevant structure at 1550nm wavelength. The device is polarization insensitive and allows the control of output (o/p) powers within certain percentage points for both polarizations.

An Empirical Model to Calculate the Threads Stripping of a Bolt Installed in a Tapped Part

To determine the length of engagement threads of a bolt installed in a tapped part in order to avoid the threads stripping remains a very current problem in the design of the thread assemblies. It does not exist a calculation method formalized for the cases where the bolt is screwed directly in a ductile material. In this article, we study the behavior of the threads stripping of a loaded assembly by using a modelling by finite elements and a rupture criterion by damage. This modelling enables us to study the different parameters likely to influence the behavior of this bolted connection. We study in particular, the influence of couple of materials constituting the connection, of the bolt-s diameter and the geometrical characteristics of the tapped part, like the external diameter and the length of engagement threads. We established an experiments design to know the most significant parameters. That enables us to propose a simple expression making possible to calculate the resistance of the threads whatever the metallic materials of the bolt and the tapped part. We carried out stripping tests in order to validate our model. The estimated results are very close to those obtained by the tests.

Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Evaluation of State of the Art IDS Message Exchange Protocols

During the last couple of years, the degree of dependence on IT systems has reached a dimension nobody imagined to be possible 10 years ago. The increased usage of mobile devices (e.g., smart phones), wireless sensor networks and embedded devices (Internet of Things) are only some examples of the dependency of modern societies on cyber space. At the same time, the complexity of IT applications, e.g., because of the increasing use of cloud computing, is rising continuously. Along with this, the threats to IT security have increased both quantitatively and qualitatively, as recent examples like STUXNET or the supposed cyber attack on Illinois water system are proofing impressively. Once isolated control systems are nowadays often publicly available - a fact that has never been intended by the developers. Threats to IT systems don’t care about areas of responsibility. Especially with regard to Cyber Warfare, IT threats are no longer limited to company or industry boundaries, administrative jurisdictions or state boundaries. One of the important countermeasures is increased cooperation among the participants especially in the field of Cyber Defence. Besides political and legal challenges, there are technical ones as well. A better, at least partially automated exchange of information is essential to (i) enable sophisticated situational awareness and to (ii) counter the attacker in a coordinated way. Therefore, this publication performs an evaluation of state of the art Intrusion Detection Message Exchange protocols in order to guarantee a secure information exchange between different entities.

Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process

In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.

Encrypted Audio Transmission Using Synchronized Nd: YAG Lasers

Encoded information based on synchronization of coupled chaotic Nd:YAG lasers in master-slave configuration is numerically studied. Encoding, transmission, and decoding of information in optical chaotic communication with a single channel is presented. We analyze the robustness of the encrypted audio transmission in a channel noise. In order to illustrate this synchronization robustness, we present two cases of study: synchronization and transmission with a single channel without and with noise in the channel.

PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device

This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity

The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the Darcy number and the porous thermal Raleigh number values, the entropy generation could be mainly due to heat transfer or to fluid friction irreversibility and that entropy generation reaches extremum values for specific inclination angles.

Experimental Characterization of a Thermoacoustic Travelling-Wave Refrigerator

The performances of a thermoacoustic travelling-wave refrigerator are presented. Developed in the frame of the European project called THATEA, it is designed for providing 600 W at a temperature of 233 K with an efficiency of 40 % relative to the Carnot efficiency. This paper presents the device and the results of the first measurements. For a cooling power of 210 W, a coefficient of performance relative to Carnot of 30 % is achieved when the refrigerator is coupled with an existing standing-wave engine.

Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Development of Intelligent Time/Frequency Based Signal Detection Algorithm for Intrusion Detection System

For the past couple of decades Weak signal detection is of crucial importance in various engineering and scientific applications. It finds its application in areas like Wireless communication, Radars, Aerospace engineering, Control systems and many of those. Usually weak signal detection requires phase sensitive detector and demodulation module to detect and analyze the signal. This article gives you a preamble to intrusion detection system which can effectively detect a weak signal from a multiplexed signal. By carefully inspecting and analyzing the respective signal, this system can successfully indicate any peripheral intrusion. Intrusion detection system (IDS) is a comprehensive and easy approach towards detecting and analyzing any signal that is weakened and garbled due to low signal to noise ratio (SNR). This approach finds significant importance in applications like peripheral security systems.

Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications

In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2×2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 μL/min is obtained at 150 V for 2×2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2×2 microneedle array.

Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach

In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken into account. The non-linear differential equations governing the problem are transformed into system of non-dimensional differential equations using similarity transformations. A newly developed meshfree numerical technique Element free Galerkin method (EFGM) is employed to solve the coupled non linear differential equations. The results illustrating the effect of various parameters like viscoelastic parameter, Hartman number, relative frequency amplitude of the oscillatory sheet to the stretching rate and Eckert number on velocity and temperature field are reported in terms of graphs and tables. The present model finds its application in polymer extrusion, drawing of plastic films and wires, glass, fiber and paper production etc.

Load Flow Analysis: An Overview

The load flow study in a power system constitutes a study of paramount importance. The study reveals the electrical performance and power flows (real and reactive) for specified condition when the system is operating under steady state. This paper gives an overview of different techniques used for load flow study under different specified conditions.

Numerical Investigation of Instabilities in Free Shear Layer Produced by NS-DBD Actuator

A numerical investigation of the effects of nanosecond barrier discharge on the stability of a two-dimensional free shear layer is performed. The computations are carried out using a compressible Navier-Stokes algorithm coupled with a thermodynamic model of the discharge. The results show that significant increases in the shear layer-s momentum thickness and Reynolds stresses occur due to actuation. Dependence on both frequency and amplitude of actuation are considered, and a comparison is made of the computed growth rates with those predicted by linear stability theory. Amplitude and frequency ranges for the efficient promotion of shear-layer instabilities are identified.

Effect of Dynamic Stall, Finite Aspect Ratio and Streamtube Expansion on VAWT Performance Prediction using the BE-M Model

A multiple-option analytical model for the evaluation of the energy performance and distribution of aerodynamic forces acting on a vertical-axis Darrieus wind turbine depending on both rotor architecture and operating conditions is presented. For this purpose, a numerical algorithm, capable of generating the desired rotor conformation depending on design geometric parameters, is coupled to a Single/Double-Disk Multiple-Streamtube Blade Element – Momentum code. Both single and double-disk configurations are analyzed and model predictions are compared to literature experimental data in order to test the capability of the code for predicting rotor performance. Effective airfoil characteristics based on local blade Reynolds number are obtained through interpolation of literature low-Reynolds airfoil databases. Some corrections are introduced inside the original model with the aim of simulating also the effects of blade dynamic stall, rotor streamtube expansion and blade finite aspect ratio, for which a new empirical relationship to better fit the experimental data is proposed. In order to predict also open field rotor operation, a freestream wind shear profile is implemented, reproducing the effect of atmospheric boundary layer.

Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration

A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.

Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC

In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.

Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.

Energy Consumption and Economic Growth in South Asian Countries: A Co-integrated Panel Analysis

This study examines causal link between energy use and economic growth for five South Asian countries over period 1971-2006. Panel cointegration, ECM and FMOLS are applied for short and long run estimates. In short run unidirectional causality from per capita GDP to per capita energy consumption is found, but not vice versa. In long run one percent increase in per capita energy consumption tend to decrease 0.13 percent per capita GDP. i.e. Energy use discourage economic growth. This short and long run relationship indicate energy shortage crisis in South Asia due to increased energy use coupled with insufficient energy supply. Beside this long run estimated coefficient of error term suggest that short term adjustment to equilibrium are driven by adjustment back to long run equilibrium. Moreover, per capita energy consumption is responsive to adjustment back to equilibrium and it takes 59 years approximately. It specifies long run feedback between both variables.