Issues in Deploying Smart Antennas in Mobile Radio Networks

With the exponentially increasing demand for wireless communications the capacity of current cellular systems will soon become incapable of handling the growing traffic. Since radio frequencies are diminishing natural resources, there seems to be a fundamental barrier to further capacity increase. The solution can be found in smart antenna systems. Smart or adaptive antenna arrays consist of an array of antenna elements with signal processing capability, that optimize the radiation and reception of a desired signal, dynamically. Smart antennas can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. They thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. Smart antennas can also track the user within a cell via direction of arrival algorithms. This implies that they are more advantageous than other antenna systems. This paper focuses on few issues about the smart antennas in mobile radio networks.

A Survey on Voice over IP over Wireless LANs

Voice over Internet Protocol (VoIP) is a form of voice communication that uses audio data to transmit voice signals to the end user. VoIP is one of the most important technologies in the World of communication. Around, 20 years of research on VoIP, some problems of VoIP are still remaining. During the past decade and with growing of wireless technologies, we have seen that many papers turn their concentration from Wired-LAN to Wireless-LAN. VoIP over Wireless LAN (WLAN) faces many challenges due to the loose nature of wireless network. Issues like providing Quality of Service (QoS) at a good level, dedicating capacity for calls and having secure calls is more difficult rather than wired LAN. Therefore VoIP over WLAN (VoWLAN) remains a challenging research topic. In this paper we consolidate and address major VoWLAN issues. This research is helpful for those researchers wants to do research in Voice over IP technology over WLAN network.

Design of Coal Quality Disturbance Free System for Coordinated Control System Based on Gain Scheduling

The economic and stable operation was affected seriously by coal quality disturbance for power plants. Based on model analysis, influence of the disturbance can be considered as gain change of control system. Power capability coefficient of coal was constructed to inhibit it. Accuracy of the coefficient was verified by operating data. Then coal quality disturbance free system based on gain scheduling was designed for coordinated control system. Simulation showed that, the strategy improved control quality obviously, and inhibited the coal quality disturbance.

Optimal Convolutive Filters for Real-Time Detection and Arrival Time Estimation of Transient Signals

Linear convolutive filters are fast in calculation and in application, and thus, often used for real-time processing of continuous data streams. In the case of transient signals, a filter has not only to detect the presence of a specific waveform, but to estimate its arrival time as well. In this study, a measure is presented which indicates the performance of detectors in achieving both of these tasks simultaneously. Furthermore, a new sub-class of linear filters within the class of filters which minimize the quadratic response is proposed. The proposed filters are more flexible than the existing ones, like the adaptive matched filter or the minimum power distortionless response beamformer, and prove to be superior with respect to that measure in certain settings. Simulations of a real-time scenario confirm the advantage of these filters as well as the usefulness of the performance measure.

Physiological and Performance Effects of Glycerol Hyperhydration for World Championship Distance Duathlons in Hot Conditions

The aim of this study was to evaluate the effect of preexercise glycerol hyperhydration on endurance performance in a heat chamber designed to simulate the World Championship Distance (WCD) duathlon (10km run, 40km ride, 5 km run). Duathlons are often performed in hot and humid conditions and as a result hydration is a major issue. Glycerol enhances the body’s capacity for fluid retention by inducing hyperhydration, which is theorized to improve thermoregulatory and cardiovascular responses, and thereby improve performance. Six well-trained athletes completed the testing protocol in a heat chamber at the La Trobe University Exercise Physiology Laboratory. Each testing session was approximately 4.5 hours in duration (2 hours of pre-exercise glycerol hyper-hydration followed by approximately 2.5 hours of exercise). The results showed an increased water retention pre-exercise and an improved overall performance of 2.04% was achieved by subjects ingesting the glycerol solution.

Performance Analysis of Fuzzy Logic Based Unified Power Flow Controller

FACTS devices are used to control the power flow, to increase the transmission capacity and to optimize the stability of the power system. One of the most widely used FACTS devices is Unified Power Flow Controller (UPFC). The controller used in the control mechanism has a significantly effects on controlling of the power flow and enhancing the system stability of UPFC. According to this, the capability of UPFC is observed by using different control mechanisms based on P, PI, PID and fuzzy logic controllers (FLC) in this study. FLC was developed by taking consideration of Takagi- Sugeno inference system in the decision process and Sugeno-s weighted average method in the defuzzification process. Case studies with different operating conditions are applied to prove the ability of UPFC on controlling the power flow and the effectiveness of controllers on the performance of UPFC. PSCAD/EMTDC program is used to create the FLC and to simulate UPFC model.

On Innovation and Knowledge Economy in Russia

Innovational development of regions in Russia is generally faced with the essential influence from federal and local authorities. The organization of effective mechanism of innovation development (and self-development) is impossible without establishment of defined institutional conditions in the analyzed field. Creative utilization of scientific concepts and information should merge, giving rise to continuing innovation and advanced production. The paper presents an analysis of institutional conditions in the field of creation and development of innovation activity infrastructure and transferring of knowledge and skills between different economic agents in Russia. Knowledge is mainly privately owned, developed through R&D investments and incorporated into technology or a product. Innovation infrastructure is a strong concentration mechanism of advanced facilities, which are mainly located inside large agglomerations or city-regions in order to benefit from scale effects in both input markets (human capital, private financial capital) and output markets (higher education services, research services). The empirical results of the paper show that in the presence of more efficient innovation and knowledge transfer and transcoding system and of a more open attitude of economic agents towards innovation, the innovation and knowledge capacity of regional economy is much higher.

Numerical Analysis of Pressure Admission Angle to Vane Angle Ratios on Performance of a Vaned Type Novel Air Turbine

Worldwide conventional resources of fossil fuel are depleting very fast due to large scale increase in use of transport vehicles every year, therefore consumption rate of oil in transport sector alone has gone very high. In view of this, the major thrust has now been laid upon the search of alternative energy source and also for cost effective energy conversion system. The air converted into compressed form by non conventional or conventional methods can be utilized as potential working fluid for producing shaft work in the air turbine and thus offering the capability of being a zero pollution energy source. This paper deals with the mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine. Effect of expansion action and steady flow work in the air turbine at high admission air pressure of 6 bar, for varying injection to vane angles ratios 0.2-1.6, at the interval of 0.2 and at different vane angles such as 30o, 45o, 51.4o, 60o, 72o, 90o, and 120o for 12, 8, 7, 6, 5, 4 and 3 vanes respectively at speed of rotation 2500 rpm, has been quantified and analyzed here. Study shows that the expansion power has major contribution to total power, whereas the contribution of flow work output has been found varying only up to 19.4%. It is also concluded that for variation of injection to vane angle ratios from 0.2 to 1.2, the optimal power output is seen at vane angle 90o (4 vanes) and for 1.4 to 1.6 ratios, the optimal total power is observed at vane angle 72o (5 vanes). Thus in the vaned type novel air turbine the optimum shaft power output is developed when rotor contains 4-5 vanes for almost all situations of injection to vane angle ratios from 0.2 to 1.6.

A Data Warehouse System to Help Assist Breast Cancer Screening in Diagnosis, Education and Research

Early detection of breast cancer is considered as a major public health issue. Breast cancer screening is not generalized to the entire population due to a lack of resources, staff and appropriate tools. Systematic screening can result in a volume of data which can not be managed by present computer architecture, either in terms of storage capabilities or in terms of exploitation tools. We propose in this paper to design and develop a data warehouse system in radiology-senology (DWRS). The aim of such a system is on one hand, to support this important volume of information providing from multiple sources of data and images and for the other hand, to help assist breast cancer screening in diagnosis, education and research.

Asymmetric and Kind of Bracing Effects on Steel Frames Under Earthquake Loads

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes and kind of bracing (x and chevron bracing) have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump

The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.

Optimizing Dialogue Strategy Learning Using Learning Automata

Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlying probabilistic structure has a Markov Chain. Researchers have mostly focused on model-free algorithms for automating the design of dialogue management using machine learning techniques such as reinforcement learning. But in model-free algorithms there exist a dilemma in engaging the type of exploration versus exploitation. Hence we present a model-based online policy learning algorithm using interconnected learning automata for optimizing dialogue strategy. The proposed algorithm is capable of deriving an optimal policy that prescribes what action should be taken in various states of conversation so as to maximize the expected total reward to attain the goal and incorporates good exploration and exploitation in its updates to improve the naturalness of humancomputer interaction. We test the proposed approach using the most sophisticated evaluation framework PARADISE for accessing to the railway information system.

Evaluation of Tension Capacity of Pile (Case Study in Sandy Soil)

High building constructions are increasing in south beaches of the Caspian Sea because of tourist attractions and limitation of residential areas. According to saturated alluvial fields transfer of load from high structures to the soil by piles is inevitable. In spite of most of these piles are under compression forces, tension piles are used in special conditions. Few studies have been conducted because of the limited use of these piles. Tension capacity of openended pipe piles in full scale was tested in this study. The length of the bored piles was 420 up to 480 cm and all were in 120 cm diameter. The results of testing 7 piles were compared with the results of relations given by researches.

A Study of Performance of Wastewater Treatment Systems for Small Sites

The pollutant removal efficiency of the Intermittently Decanted Extended Aeration (IDEA) wastewater treatment system at Curtin University Sarawak Campus, and conventional activated sludge wastewater treatment system at a local resort, Resort A, is monitored. The influent and effluent characteristics are tested during wet and dry weather conditions, and peak and off peak periods. For the wastewater treatment systems at Curtin Sarawak and Resort A, during dry weather and peak season, it was found that the BOD5 concentration in the influent is 121.7mg/L and 80.0mg/L respectively, and in the effluent, 18.7mg/L and and 18.0mg/L respectively. Analysis of the performance of the IDEA treatment system showed that the operational costs can be minimized by 3%, by decreasing the number of operating cycles. As for the treatment system in Resort A, by utilizing a smaller capacity air blower, a saving of 12% could be made in the operational costs.

Exploring the Relationships among Shopping Motivation, Shopping Behavior, and Post- Purchasing Behavior of Mainland Tourists toward Taipei Night Markets

The consumption capability of people in China has been a big issue to tourism business. Due to the increasing of China tourists, Taiwan-s government rescinded the category of people in China and opened up the non-stopped airline from China to Taiwan. The “one-day traveling style between China and Taiwan" has formed, hoping to bring business to Taiwan. Night market, which shows foreigners the very local character of Taiwan, contains various merchandise for consumers to purchase. With the increasing numbers of non-stopped airline, visiting Taiwan-s night markets has also been one of major activities to China-s tourists. The purpose of the present study is to understand the consumer behavior of China tourists in tourist night markets in Taipei and analyze that if their shopping motives cause the different shopping behaviors and post-purchase satisfaction and revisiting intention. The results reveled that for the China tourists, the motives of significant influence to the shopping behaviors. Also, the shopping behaviors significant influence to the whole satisfaction and the whole satisfaction significant influence to post-purchase behavior.

A Real-time Computer Vision System for VehicleTracking and Collision Detection

Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.

Processing and Assessment of Quality Characteristics of Composite Baby Foods

The usefulness of weaning foods to meet the nutrient needs of children is well recognized, and most of them are precooked roller dried mixtures of cereal and/or legume flours which posses a high viscosity and bulk when reconstituted. The objective of this study was to formulate composite weaning foods using cereals, malted legumes and vegetable powders and analyze them for nutrients, functional properties and sensory attributes. Selected legumes (green gram and lentil) were germinated, dried and dehulled. Roasted wheat, rice, carrot powder and skim milk powder also were used. All the ingredients were mixed in different proportions to get four formulations, made into 30% slurry and dried in roller drier. The products were analyzed for proximate principles, mineral content, functional and sensory qualities. The results of analysis showed following range of constituents per 100g of formulations on dry weight basis, protein, 18.1-18.9 g ; fat, 0.78-1.36 g ; iron, 5.09-6.53 mg; calcium, 265-310 mg. The lowest water absorption capacity was in case of wheat green gram based and the highest was in rice lentil based sample. Overall sensory qualities of all foods were graded as “good" and “very good" with no significant differences. The results confirm that formulated weaning foods were nutritionally superior, functionally appropriate and organoleptically acceptable.

Personalisation of SOA Registry Query Results: Implementation, Performance Analysis and Scalability Evaluation

Service discovery is a very important component of Service Oriented Architectures (SOA). This paper presents two alternative approaches to customise the query results of private service registry such as Universal Description, Discovery and Integration (UDDI). The customisation is performed based on some pre-defined and/or real-time changing parameters. This work identifies the requirements, designs and additional mechanisms that must be applied to UDDI in order to support this customisation capability. We also detail the implements of the approaches and examine its performance and scalability. Based on our experimental results, we conclude that both approaches can be used to customise registry query results, but by storing personalization parameters in external resource will yield better performance and but less scalable when size of query results increases. We believe these approaches when combined with semantics enabled service registry will enhance the service discovery methods within a private UDDI registry environment.

Analysis of Driver Point of Regard Determinations with Eye-Gesture Templates Using Receiver Operating Characteristic

An Advance Driver Assistance System (ADAS) is a computer system on board a vehicle which is used to reduce the risk of vehicular accidents by monitoring factors relating to the driver, vehicle and environment and taking some action when a risk is identified. Much work has been done on assessing vehicle and environmental state but there is still comparatively little published work that tackles the problem of driver state. Visual attention is one such driver state. In fact, some researchers claim that lack of attention is the main cause of accidents as factors such as fatigue, alcohol or drug use, distraction and speeding all impair the driver-s capacity to pay attention to the vehicle and road conditions [1]. This seems to imply that the main cause of accidents is inappropriate driver behaviour in cases where the driver is not giving full attention while driving. The work presented in this paper proposes an ADAS system which uses an image based template matching algorithm to detect if a driver is failing to observe particular windscreen cells. This is achieved by dividing the windscreen into 24 uniform cells (4 rows of 6 columns) and matching video images of the driver-s left eye with eye-gesture templates drawn from images of the driver looking at the centre of each windscreen cell. The main contribution of this paper is to assess the accuracy of this approach using Receiver Operating Characteristic analysis. The results of our evaluation give a sensitivity value of 84.3% and a specificity value of 85.0% for the eye-gesture template approach indicating that it may be useful for driver point of regard determinations.

An Artificial Immune System for a Multi Agent Robotics System

This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.