Independent Design of Multi-loop PI/PID Controllers for Multi-delay Processes

The interactions between input/output variables are a very common phenomenon encountered in the design of multi-loop controllers for interacting multivariable processes, which can be a serious obstacle for achieving a good overall performance of multiloop control system. To overcome this impediment, the decomposed dynamic interaction analysis is proposed by decomposing the multiloop control system into a set of n independent SISO systems with the corresponding effective open-loop transfer function (EOTF) within the dynamic interactions embedded explicitly. For each EOTF, the reduced model is independently formulated by using the proposed reduction design strategy, and then the paired multi-loop proportional-integral-derivative (PID) controller is derived quite simply and straightforwardly by using internal model control (IMC) theory. This design method can easily be implemented for various industrial processes because of its effectiveness. Several case studies are considered to demonstrate the superior of the proposed method.

Applying Case-Based Reasoning in Supporting Strategy Decisions

Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.

Modeling Strategy and Numerical Validation of the Turbulent Flow over a two-Dimensional Flat Roof

The construction of a civil structure inside a urban area inevitably modifies the outdoor microclimate at the building site. Wind speed, wind direction, air pollution, driving rain, radiation and daylight are some of the main physical aspects that are subjected to the major changes. The quantitative amount of these modifications depends on the shape, size and orientation of the building and on its interaction with the surrounding environment.The flow field over a flat roof model building has been numerically investigated in order to determine two-dimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data.Several turbulence models and spatial node distributions have been tested for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions.The proposed calculations have allowed the development of a preliminary procedure to be used as a guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a twodimensional roof architecture dominated by flow separation.

Speed Sensorless Control with a Linearizationby State Feedback of Asynchronous Machine Using a Model Reference Adaptive System

In this paper, we show that the association of the PI regulators for the speed and stator currents with a control strategy using the linearization by state feedback for an induction machine without speed sensor, and with an adaptation of the rotor resistance. The rotor speed is estimated by using the model reference adaptive system approach (MRAS). This method consists of using two models: The first is the reference model and the second is an adjustable one in which two components of the stator flux, obtained from the measurement of the currents and stator voltages are estimated. The estimated rotor speed is then obtained by canceling the difference between stator-flux of the reference model and those of the adjustable one. Satisfactory results of simulation are obtained and discussed in this paper to highlight the proposed approach.

Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows

This work is to study a roll of the fluctuating density gradient in the compressible flows for the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups: group proportional to the mean velocity, and that proportional to the mean strain rate, and that proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vorticity in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.

Analytical and Finite Element Analysis of Hydroforming Deep Drawing Process

This paper gives an overview of a deep drawing process by pressurized liquid medium separated from the sheet by a rubber diaphragm. Hydroforming deep drawing processing of sheet metal parts provides a number of advantages over conventional techniques. It generally increases the depth to diameter ratio possible in cup drawing and minimizes the thickness variation of the drawn cup. To explore the deformation mechanism, analytical and numerical simulations are used for analyzing the drawing process of an AA6061-T4 blank. The effects of key process parameters such as coefficient of friction, initial thickness of the blank and radius between cup wall and flange are investigated analytically and numerically. The simulated results were in good agreement with the results of the analytical model. According to finite element simulations, the hydroforming deep drawing method provides a more uniform thickness distribution compared to conventional deep drawing and decreases the risk of tearing during the process.

Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.

Asymptotic Stabilization of an Active Magnetic Bearing System using LMI-based Sliding Mode Control

In this paper, stabilization of an Active Magnetic Bearing (AMB) system with varying rotor speed using Sliding Mode Control (SMC) technique is considered. The gyroscopic effect inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Also, transformation of the AMB dynamic model into a new class of uncertain system shows that this gyroscopic effect lies in the mismatched part of the system matrix. Moreover, the current gain parameter is allowed to be varied in a known bound as an uncertainty in the input matrix. SMC design method is proposed in which the sufficient condition that guarantees the global exponential stability of the reduced-order system is represented in Linear Matrix Inequality (LMI). Then, a new chattering-free control law is established such that the system states are driven to reach the switching surface and stay on it thereafter. The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems

Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.

Finite Element and Subspace Identification Approaches to Model Development of a Smart Acoustic Box with Experimental Verification

Two approaches for model development of a smart acoustic box are suggested in this paper: the finite element (FE) approach and the subspace identification. Both approaches result in a state-space model, which can be used for obtaining the frequency responses and for the controller design. In order to validate the developed FE model and to perform the subspace identification, an experimental set-up with the acoustic box and dSPACE system was used. Experimentally obtained frequency responses show good agreement with the frequency responses obtained from the FE model and from the identified model.

Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid

Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.

Experimental Study of Light Crude Oil-Water Emulsions

This paper made an attempt to investigate the problem associated with enhancement of emulsions of light crude oil-water recovery in an oil field of Algerian Sahara. Measurements were taken through experiments using RheoStress (RS600). Factors such as shear rate, temperature and light oil concentration on the viscosity behavior were considered. Experimental measurements were performed in terms of shear stress–shear rate, yield stress and flow index on mixture of light crude oil–water. The rheological behavior of emulsion showed Non-Newtonian shear thinning behavior (Herschel-Bulkley). The experiments done in the laboratory showed the stability of some water in light crude oil emulsions form during consolidate oil recovery process. To break the emulsion using additives may involve higher cost and could be very expensive. Therefore, further research should be directed to find solution of these problems that have been encountered.

Development of Autonomous Cable Inspection Robot for Nuclear Power Plant

The cables in a nuclear power plant are designed to be used for about 40 years in safe operation environment. However, the heat and radiation in the nuclear power plant causes the rapid performance deterioration of cables in nuclear vessels and heat exchangers, which requires cable lifetime estimation. The most accurate method of estimating the cable lifetime is to evaluate the cables in a laboratory. However, removing cables while the plant is operating is not allowed because of its safety and cost. In this paper, a robot system to estimate the cable lifetime in nuclear power plants is developed and tested. The developed robot system can calculate a modulus value to estimate the cable lifetime even when the nuclear power plant is in operation.

Numerical Simulation of Interfacial Flow with Volume-Of-Fluid Method

In this article, various models of surface tension force (CSF, CSS and PCIL) for interfacial flows have been applied to dynamic case and the results were compared. We studied the Kelvin- Helmholtz instabilities, which are produced by shear at the interface between two fluids with different physical properties. The velocity inlet is defined as a sinusoidal perturbation. When gravity and surface tension are taking into account, we observe the development of the Instability for a critic value of the difference of velocity of the both fluids. The VOF Model enables to simulate Kelvin-Helmholtz Instability as dynamic case.

Ignition Analysis in Supersonic Turbulent Mixing Layer

Numerical study of two dimensional supersonic hydrogen-air mixing layer is performed to investigate the effect of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes and one equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is used as an additive and the results show that inflow turbulence and chemical additive may drastically decrease the ignition delay in supersonic combustion.

Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels

A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.

Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools

This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.

Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis

Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.

3D Sensing and Mapping for a Tracked Mobile Robot with a Movable Laser Ranger Finder

This paper presents a sensing system for 3D sensing and mapping by a tracked mobile robot with an arm-type sensor movable unit and a laser range finder (LRF). The arm-type sensor movable unit is mounted on the robot and the LRF is installed at the end of the unit. This system enables the sensor to change position and orientation so that it avoids occlusions according to terrain by this mechanism. This sensing system is also able to change the height of the LRF by keeping its orientation flat for efficient sensing. In this kind of mapping, it may be difficult for moving robot to apply mapping algorithms such as the iterative closest point (ICP) because sets of the 2D data at each sensor height may be distant in a common surface. In order for this kind of mapping, the authors therefore applied interpolation to generate plausible model data for ICP. The results of several experiments provided validity of these kinds of sensing and mapping in this sensing system.