Dynamic Load Modeling for KHUZESTAN Power System Voltage Stability Studies

Based on the component approach, three kinds of dynamic load models, including a single –motor model, a two-motor model and composite load model have been developed for the stability studies of Khuzestan power system. The study results are presented in this paper. Voltage instability is a dynamic phenomenon and therefore requires dynamic representation of the power system components. Industrial loads contain a large fraction of induction machines. Several models of different complexity are available for the description investigations. This study evaluates the dynamic performances of several dynamic load models in combination with the dynamics of a load changing transformer. Case study is steel industrial substation in Khuzestan power systems.

Growth and Mineral Content of Mokara chark kuan Pink Orchid as Affected by Allelopathic Lantana camara Weed

Growth and mineral nutrient elemental content were studied in Mokara chark kuan pink terrestrial orchid and wild Lantana camara weed agroecosystem. The treated subplots were encircled with L. camara plants and sprayed weekly with L. camara 10% leaf aqueous extract. Allelopathic interactions were possible through extensive invading root of L. camara plants into the treated orchid subplots and weekly L. camara leaf aqueous extract sprayings. Orchid growth was not significantly different in between the control and treated plots, but chlorosis and yellowish patches of leaves were observed in control orchid leaves. Nitrogen content in L. camara leaf was significantly higher than in orchid leaf, the order of importance of mineral nutrient contents in L. camara leaf was K>Mg>Na>N. In treated orchid leaf, the order of importance was N>K>Mg>Na. Orchid leaf N content from the treated plot was higher than control, but Mg and Na contents were almost similar.

Multimodal Reasoning in a Knowledge Engineering Framework for Product Support

Problem solving has traditionally been one of the principal research areas for artificial intelligence. Yet, although artificial intelligence reasoning techniques have been employed in several product support systems, the benefit of integrating product support, knowledge engineering, and problem solving, is still unclear. This paper studies the synergy of these areas and proposes a knowledge engineering framework that integrates product support systems and artificial intelligence techniques. The framework includes four spaces; the data, problem, hypothesis, and solution ones. The data space incorporates the knowledge needed for structured reasoning to take place, the problem space contains representations of problems, and the hypothesis space utilizes a multimodal reasoning approach to produce appropriate solutions in the form of virtual documents. The solution space is used as the gateway between the system and the user. The proposed framework enables the development of product support systems in terms of smaller, more manageable steps while the combination of different reasoning techniques provides a way to overcome the lack of documentation resources.

Nanocrystalline Na0.1V2O5.nH2O Xerogel Thin Film for Gas Sensing

Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol gel synthesis was used as gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130oC to 150oC show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.

Fuzzy Control of a Quarter-Car Suspension System

An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.

Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control

In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.

Performance Analysis of Quantum Cascaded Lasers

Improving the performance of the QCL through block diagram as well as mathematical models is the main scope of this paper. In order to enhance the performance of the underlined device, the mathematical model parameters are used in a reliable manner in such a way that the optimum behavior was achieved. These parameters play the central role in specifying the optical characteristics of the considered laser source. Moreover, it is important to have a large amount of radiated power, where increasing the amount of radiated power represents the main hopping process that can be predicted from the behavior of quantum laser devices. It was found that there is a good agreement between the calculated values from our mathematical model and those obtained with VisSim and experimental results. These demonstrate the strength of mplementation of both mathematical and block diagram models.

Multi Switched Split Vector Quantizer

Vector quantization is a powerful tool for speech coding applications. This paper deals with LPC Coding of speech signals which uses a new technique called Multi Switched Split Vector Quantization, This is a hybrid of two product code vector quantization techniques namely the Multi stage vector quantization technique, and Switched split vector quantization technique,. Multi Switched Split Vector Quantization technique quantizes the linear predictive coefficients in terms of line spectral frequencies. From results it is proved that Multi Switched Split Vector Quantization provides better trade off between bitrate and spectral distortion performance, computational complexity and memory requirements when compared to Switched Split Vector Quantization, Multi stage vector quantization, and Split Vector Quantization techniques. By employing the switching technique at each stage of the vector quantizer the spectral distortion, computational complexity and memory requirements were greatly reduced. Spectral distortion was measured in dB, Computational complexity was measured in floating point operations (flops), and memory requirements was measured in (floats).

The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce ‘Dublin’

Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic films and destructively harvested 4, 5, and 6 weeks after transplanting. Thermic films can increase night temperatures up to 2 ⁰C reducing the wide fluctuation in greenhouse temperature during winter compared to the standard commercial film and consequently increased the yield (leaf number, fresh weight, and dry weight) of lettuce plants. Lettuce plants grown under Clear film respond to cold stress by the accumulation of secondary products (phenolics, and flavonoids).

Acoustic Analysis with Consideration of Damping Effects of Air Viscosity in Sound Pathway

Sound pathways in the enclosures of small earphones are very narrow. In such narrow pathways, the speed of sound propagation and the phase of sound waves change because of the air viscosity. We have developed a new finite element method that includes the effects of damping due to air viscosity for modeling the sound pathway. This method is developed as an extension of the existing finite element method for porous sound-absorbing materials. The numerical calculation results using the proposed finite element method are validated against the existing calculation methods.

GPS TEC Variation Affected by the Interhemispheric Conjugate Auroral Activity on 21 September 2009

This paper observed the interhemispheric conjugate auroral activity occurred on 21 September 2009. The GPS derived ionospheric total electron content (TEC) during a weak substorm interval recorded at interhemispheric conjugate points at Husafell in Iceland and Syowa in Antarctica is investigated to look at their signatures on the auroral features. Selection of all-sky camera (ASC) images and keogram at Tjörnes and Syowa during the interval 00:47:54 – 00:50:14 UT on 21 September 2009 found that the auroral activity had exerted their influence on the GPS TEC as a consequence of varying interplanetary magnetic field (IMF) By polarity.

Groundwater Quality Assessment for Irrigation Use in Vadodara District, Gujarat, India

This study was conducted to evaluate factors regulating groundwater quality in an area with agriculture as main use. Under this study twelve groundwater samples have been collected from Padra taluka, Dabhoi taluka and Savli taluka of Vadodara district. Groundwater samples were chemically analyzed for major physicochemical parameter in order to understand the different geochemical processes affecting the groundwater quality. The analytical results shows higher concentration of total dissolved solids (16.67%), electrical conductivity (25%) and magnesium (8.33%) for pre monsoon and total dissolved solids (16.67%), electrical conductivity (33.3%) and magnesium (8.33%) for post monsoon which indicates signs of deterioration as per WHO and BIS standards. On the other hand, 50% groundwater sample is unsuitable for irrigation purposes based on irrigation quality parameters. The study revealed that application of fertilizer for agricultural contributing the higher concentration of ions in aquifer of Vadodara district.

Identification of Ductile Damage Parameters for Austenitic Steel

The modeling of inelastic behavior of plastic materials requires measurements providing information on material response to different multiaxial loading conditions. Different triaxiality conditions and values of Lode parameters have to be covered for complex description of the material plastic behavior. Samples geometries providing material plastic behavoiur over the range of interest are proposed with the use of FEM analysis. Round samples with 3 different notches and smooth surface are used together with butterfly type of samples tested at angle ranging for 0 to 90°. Identification of ductile damage parameters is carried out on the basis of obtained experimental data for austenitic stainless steel. The obtained material plastic damage parameters are subsequently applied to FEM simulation of notched CT normally samples used for fracture mechanics testing and results from the simulation are compared with real tests.

In-flight Meals, Passengers- Level of Satisfaction and Re-flying Intention

Service quality has become a centerpiece for airline companies in vying with one another and keeps their image in the minds of passengers. Many airlines have pushed service quality through service personalization which includes both ground and on board especially from the viewpoint of retaining satisfied passengers and attracting new ones. Besides those, in-flight meals/food service is another important aspect of the airline operation. The in flight meals/food services now are seen as part of marketing strategies in attracting business or leisure travelers. This study reports the outcomes of the investigation on in-flight meals/food attributes toward passengers- level of satisfaction and re-flying intention. Taste, freshness, appearance of in-flight meals/food served and menu choices are important to the airlines passengers especially for the long haul flight. Food not only contributes to the prediction of the airline passengers- levels of satisfaction but besides other factors slightly influence passengers- re- flying intention. Airline companies therefore should not ignore this element but take the opportunity to create more attractive and acceptable in-flight meals/food along with other matter as marketing tools in attracting passengers to re-flying with them.

Dempster-Shafer Evidence Theory for Image Segmentation: Application in Cells Images

In this paper we propose a new knowledge model using the Dempster-Shafer-s evidence theory for image segmentation and fusion. The proposed method is composed essentially of two steps. First, mass distributions in Dempster-Shafer theory are obtained from the membership degrees of each pixel covering the three image components (R, G and B). Each membership-s degree is determined by applying Fuzzy C-Means (FCM) clustering to the gray levels of the three images. Second, the fusion process consists in defining three discernment frames which are associated with the three images to be fused, and then combining them to form a new frame of discernment. The strategy used to define mass distributions in the combined framework is discussed in detail. The proposed fusion method is illustrated in the context of image segmentation. Experimental investigations and comparative studies with the other previous methods are carried out showing thus the robustness and superiority of the proposed method in terms of image segmentation.

The Main Principles of Text-to-Speech Synthesis System

In this paper, the main principles of text-to-speech synthesis system are presented. Associated problems which arise when developing speech synthesis system are described. Used approaches and their application in the speech synthesis systems for Azerbaijani language are shown.

An Efficient VLSI Design Approach to Reduce Static Power using Variable Body Biasing

In CMOS integrated circuit design there is a trade-off between static power consumption and technology scaling. Recently, the power density has increased due to combination of higher clock speeds, greater functional integration, and smaller process geometries. As a result static power consumption is becoming more dominant. This is a challenge for the circuit designers. However, the designers do have a few methods which they can use to reduce this static power consumption. But all of these methods have some drawbacks. In order to achieve lower static power consumption, one has to sacrifice design area and circuit performance. In this paper, we propose a new method to reduce static power in the CMOS VLSI circuit using Variable Body Biasing technique without being penalized in area requirement and circuit performance.

Synthesis and Characterization of Surface Functionalized Nanobiocomposite by Nano Hydroxyapatite

In this study, synthesis of biomemitic patterned nano hydroxyapatite-starch biocomposites using different concentration of starch to evaluate effect of polymer alteration on biocomposites structural properties has been reported. Formation of hydroxyapatite nano particles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the samples were characterized using scanning and transmission electron microscopy (SEM and TEM). It seems that by increasing starch content, the more active site of polymer (oxygen atoms) can be provided for interaction with Ca2+ followed by phosphate and hydroxyl group.

A Review of in-orbit Observations of Radiation- Induced Effects in Commercial Memories onboard Alsat-1

This paper presents a review of an 8-year study on radiation effects in commercial memory devices operating within the main on-board computer system OBC386 of the Algerian microsatellite Alsat-1. A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in these commercial memories shows that the typical SEU rate at alsat-1's orbit is 4.04 × 10-7 SEU/bit/day, where 98.6% of these SEUs cause single-bit errors, 1.22% cause double-byte errors, and the remaining SEUs result in multiple-bit and severe errors.

Using Stresses Obtained from a Low Detailed FE Model and Located at a Reference Point to Quickly Calculate the Free-edge Stress Intensity Factors of Bonded Joints

The present study focuses on methods allowing a convenient and quick calculation of the SIFs in order to predict the static adhesive strength of bonded joints. A new SIF calculation method is proposed, based on the stresses obtained from a FE model at a reference point located in the adhesive layer at equal distance of the free-edge and of the two interfaces. It is shown that, even limiting ourselves to the two main modes, i.e. the opening and the shearing modes, and using the values of the stresses resulting from a low detailed FE model, an efficient calculation of the peeling stress at adhesive-substrate corners can be obtained by this way. The proposed method is interesting in that it can be the basis of a prediction tool that will allow the designer to quickly evaluate the SIFs characterizing a particular application without developing a detailed analysis.