Hydrophobic Characteristics of EPDM Composite Insulators in Simulated Arid Desert Environment

Overhead electrical insulators form an important link in an electric power system. Along with the traditional insulators (i.e. glass and porcelain, etc) presently the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters such temperature, environmental pollution, UV-radiations, etc. which seriously effect their electrical, chemical and hydrophobic properties. The UV radiation level in the central region of Saudi Arabia is high as compared to the IEC standard for the accelerated aging of the composite insulators. Commonly used suspension type of composite EPDM (Ethylene Propylene Diene Monomer) insulator was subjected to accelerated stress aging as per modified IEC standard simulating the inland arid deserts atmospheric condition and also as per IEC-61109 standard. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that EPDM insulator loses it hydrophobic properties proportional to the intensity of UV irradiations and its rate of recovery is also very low as compared to Silicone Rubber insulator.KeywordsEPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Cold-pressed Kenaf and Fibreglass Hybrid Composites Laminates: Effect of Fibre Types

Natural fibres have emerged as the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits as they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fibre composites. The properties of hybrid composites highly depends on several factors, including the interaction of fillers with the polymeric matrix, shape and size (aspect ratio), and orientation of fillers [1]. In this study, natural fibre kenaf composites and kenaf/fibreglass hybrid composites were fabricated by a combination of hand lay-up method and cold-press method. The effect of different fibre types (powder, short and long) on the tensile properties of composites is investigated. The kenaf composites with and without the addition of fibreglass were then characterized by tensile testing and scanning electron microscopy. A significant improvement in tensile strength and modulus were indicated by the introduction of long kenaf/woven fibreglass hybrid composite. However, the opposite trends are observed in kenaf powder composite. Fractographic observation shows that fibre/matrix debonding causes the fibres pull out. This phenomenon results in the fibre and matrix fracture.

A Research on Glass Ceiling Syndrome Career Barriers of Women Academics

Although women have merit in their jobs, they still are located very few in the top management in many sectors. There are many causes of such situation. Such a situation creates obstacles; especially invisible ones are called “glass ceiling syndrome”. Also, studies which handle this subject in academic community are very few. The aim of this research is to reach the results about glass ceiling obstacles in terms of female teaching staff (academics) working in higher education institutions. To this end, our study was performed on female academics working at Selcuk University, Konya / Turkey. Our study's main aim can be expressed as to determine whether there are glass ceiling obstacles for female academics working at the higher education institution in question, to measure their glass ceiling perceptions and, thus, to identify what the glass ceiling barrier components for them to promotion to senior management positions are.

Temperature Variation Effects on I-V Characteristics of Cu-Phthalocyanine based OFET

In this study we present the effect of elevated temperatures from 300K to 400K on the electrical properties of copper Phthalocyanine (CuPc) based organic field effect transistors (OFET). Thin films of organic semiconductor CuPc (40nm) and semitransparent Al (20nm) were deposited in sequence, by vacuum evaporation on a glass substrate with previously deposited Ag source and drain electrodes with a gap of 40 μm. Under resistive mode of operation, where gate was suspended it was observed that drain current of this organic field effect transistor (OFET) show an increase with temperature. While in grounded gate condition metal (aluminum) – semiconductor (Copper Phthalocyanine) Schottky junction dominated the output characteristics and device showed switching effect from low to high conduction states like Zener diode at higher bias voltages. This threshold voltage for switching effect has been found to be inversely proportional to temperature and shows an abrupt decrease after knee temperature of 360K. Change in dynamic resistance (Rd = dV/dI) with respect to temperature was observed to be -1%/K.

Effect of Coolant on Cutting Forces and Surface Roughness in Grinding of CSM GFRP

This paper presents a comparative study on dry and wet grinding through experimental investigation in the grinding of CSM glass fibre reinforced polymer laminates using a pink aluminium oxide wheel. Different sets of experiments were performed to study the effects of the independent grinding parameters such as grinding wheel speed, feed and depth of cut on dependent performance criteria such as cutting forces and surface finish. Experimental conditions were laid out using design of experiment central composite design. An effective coolant was sought in this study to minimise cutting forces and surface roughness for GFRP laminates grinding. Test results showed that the use of coolants reduces surface roughness, although not necessarily the cutting forces. These research findings provide useful economic machining solution in terms of optimized grinding conditions for grinding CSM GFRP.

Paleoclimate Reconstruction during Pabdeh, Gurpi, Kazhdumi and Gadvan Formations (Cretaceous-Tertiary) Based on Clay Mineral Distribution

Paleoclimate was reconstructed by the clay mineral assemblages of shale units of Pabdeh (Paleocene- Oligocene), Gurpi (Upper Cretaceous), Kazhdumi (Albian-Cenomanian) and Gadvan (Aptian-Neocomian) formations in the Bangestan anticline. To compare with clay minerals assemblages in these formations, selected samples also taken from available formations in drilled wells in Ahvaz, Marun, Karanj, and Parsi oil fields. Collected samples prepared using standard clay mineral methodology. They were treated as normal, glycolated and heated oriented glass slides. Their identification was made on X-Ray diffractographs. Illite % varies from 8 to 36. Illite quantity increased from Pabdeh to Gurpi Formation. This may be due to dominant dry climate. Kaolinite is in range of 12-49%. Its variation style in different formations could be a marker of climate changes from wet to dry which is supported by the lithological changes. Chlorite (4-28%) can also be detected in those samples without any kaolinite. Mixed layer minerals as the mixture of illite-chlorite and illite-vermiculite-montmorillonite are varied from 6 to 36%, decreased during Kazhdumi deposition from the base to the top. This result may be according to decreasing of illite leaching process. Vermiculite was also determined in very less quantity and found in those units without kaolinite. Montmorillonite varies from 8 to 43%, and its presence is due to terrestrial depositional condition. Stratigraphical documents is also supported this idea that clay mineral distribution is a function of the climate changes. It seems, thus, the present results can be indicated a possible procedure for ancient climate changes evaluation.

Application of SDS/LABS in Recovery Improvement from Fractured Models

This work concerns on experimentally investigation of surfactant flooding in fractured porous media. In this study a series of water and surfactant injection processes were performed on micromodels initially saturated with a heavy crude oil. Eight fractured glass micromodels were used to illustrate effects of surfactant types and concentrations on oil recovery efficiency in presence of fractures with different properties i.e. fracture orientation, length and number of fractures. Two different surfactants with different concentrations were tested. The results showed that surfactant flooding would be more efficient by using SDS surfactant aqueous solution and also by locating injection well in a proper position respect to fracture properties. This study demonstrates different physical and chemical conditions that affect the efficiency of this method of enhanced oil recovery.

Integrated Drunken Driving Prevention System

As is needless to say; a majority of accidents, which occur, are due to drunk driving. As such, there is no effective mechanism to prevent this. Here we have designed an integrated system for the same purpose. Alcohol content in the driver-s body is detected by means of an infrared breath analyzer placed at the steering wheel. An infrared cell directs infrared energy through the sample and any unabsorbed energy at the other side is detected. The higher the concentration of ethanol, the more infrared absorption occurs (in much the same way that a sunglass lens absorbs visible light, alcohol absorbs infrared light). Thus the alcohol level of the driver is continuously monitored and calibrated on a scale. When it exceeds a particular limit the fuel supply is cutoff. If the device is removed also, the fuel supply will be automatically cut off or an alarm is sounded depending upon the requirement. This does not happen abruptly and special indicators are fixed at the back to avoid inconvenience to other drivers using the highway signals. Frame work for integration of sensors and control module in a scalable multi-agent system is provided .A SMS which contains the current GPS location of the vehicle is sent via a GSM module to the police control room to alert the police. The system is foolproof and the driver cannot tamper with it easily. Thus it provides an effective and cost effective solution for the problem of drunk driving in vehicles.

In situ Observation of the State and Stability of Hemoglobin Adsorbed onto Glass Surface by Slab Optical Waveguide (SOWG) Spectroscopy

The state and stability of hemoglobin adsorbed on the glass surface was investigated using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was same as that of the hemoglobin in solution. This result suggests that no significant denaturation occurred by adsorption. The adsorption of hemoglobin is relatively strong that the hemoglobin molecules even remained adsorbed after rinsing the cell with buffer solution. The peak shift caused by the reduction of adsorbed hemoglobin was also observed.

Block Activity in Metric Neural Networks

The model of neural networks on the small-world topology, with metric (local and random connectivity) is investigated. The synaptic weights are random, driving the network towards a chaotic state for the neural activity. An ordered macroscopic neuron state is induced by a bias in the network connections. When the connections are mainly local, the network emulates a block-like structure. It is found that the topology and the bias compete to influence the network to evolve into a global or a block activity ordering, according to the initial conditions.

Design and Analysis of an Automobile Bumper with the Capacity of Energy Release Using GMT Materials

Bumpers play an important role in preventing the impact energy from being transferred to the automobile and passengers. Saving the impact energy in the bumper to be released in the environment reduces the damages of the automobile and passengers. The goal of this paper is to design a bumper with minimum weight by employing the Glass Material Thermoplastic (GMT) materials. This bumper either absorbs the impact energy with its deformation or transfers it perpendicular to the impact direction. To reach this aim, a mechanism is designed to convert about 80% of the kinetic impact energy to the spring potential energy and release it to the environment in the low impact velocity according to American standard1. In addition, since the residual kinetic energy will be damped with the infinitesimal elastic deformation of the bumper elements, the passengers will not sense any impact. It should be noted that in this paper, modeling, solving and result-s analysis are done in CATIA, LS-DYNA and ANSYS V8.0 software respectively.

An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India

A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.

Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method

Polymer-like organic thin films were deposited on both aluminum alloy type 6061 and glass substrates at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing benzene and hexamethyldisiloxane (HMDSO) as precursor materials. The surface and physical properties of plasma-polymerized organic thin films were investigated at different r.f. powers. The effects of benzene/argon ratio on the properties of plasma polymerized benzene films were also investigated. It is found that using benzene alone results in a non-coherent and non-adherent powdery deposited material. The chemical structure and surface properties of the asgrown plasma polymerized thin films were analyzed on glass substrates with FTIR and contact angle measurements. FTIR spectra of benzene deposited film indicated that the benzene rings are preserved when increasing benzene ratio and/or decreasing r.f. powers. FTIR spectra of HMDSO deposited films indicated an increase of the hydrogen concentration and a decrease of the oxygen concentration with the increase of r.f. power. The contact angle (θ) of the films prepared from benzene was found to increase by about 43% as benzene ratio increases from 10% to 20%. θ was then found to decrease to the original value (51°) when the benzene ratio increases to 100%. The contact angle, θ, for both benzene and HMDSO deposited films were found to increase with r.f. power. This signifies that the plasma polymerized organic films have substantially low surface energy as the r.f power increases. The corrosion resistance of aluminum alloy substrate both bare and covered with plasma polymerized thin films was carried out by potentiodynamic polarization measurements in standard 3.5 wt. % NaCl solution at room temperature. The results indicate that the benzene and HMDSO deposited films are suitable for protection of the aluminum substrate against corrosion. The changes in the processing parameters seem to have a strong influence on the film protective ability. Surface roughness of films deposited on aluminum alloy substrate was investigated using scanning electron microscopy (SEM). The SEM images indicate that the surface roughness of benzene deposited films increase with decreasing the benzene ratio. SEM images of benzene and HMDSO deposited films indicate that the surface roughness decreases with increasing r.f. power. Studying the above parameters indicate that the films produced are suitable for specific practical applications.

Stress Relaxation of Date at Different Temperature and Moisture Content of Product: A New Approach

Iran is one of the greatest producers of date in the world. However due to lack of information about its viscoelastic properties, much of the production downgraded during harvesting and postharvesting processes. In this study the effect of temperature and moisture content of product were investigated on stress relaxation characteristics. Therefore, the freshly harvested date (kabkab) at tamar stage were put in controlled environment chamber to obtain different temperature levels (25, 35, 45, and 55 0C) and moisture contents (8.5, 8.7, 9.2, 15.3, 20, 32.2 %d.b.). A texture analyzer TAXT2 (Stable Microsystems, UK) was used to apply uniaxial compression tests. A chamber capable to control temperature was designed and fabricated around the plunger of texture analyzer to control the temperature during the experiment. As a new approach a CCD camera (A4tech, 30 fps) was mounted on a cylindrical glass probe to scan and record contact area between date and disk. Afterwards, pictures were analyzed using image processing toolbox of Matlab software. Individual date fruit was uniaxially compressed at speed of 1 mm/s. The constant strain of 30% of thickness of date was applied to the horizontally oriented fruit. To select a suitable model for describing stress relaxation of date, experimental data were fitted with three famous stress relaxation models including the generalized Maxwell, Nussinovitch, and Pelege. The constant in mentioned model were determined and correlated with temperature and moisture content of product using non-linear regression analysis. It was found that Generalized Maxwell and Nussinovitch models appropriately describe viscoelastic characteristics of date fruits as compared to Peleg mode.

Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.

Error Analysis of Nonconventional Electrical Moisture-meter under Simplified Conditions

An electrical apparatus for measuring moisture content was developed by our laboratory and uses dependence of electrical properties on water content in studied material. Error analysis of the apparatus was run by measuring different volumes of water in a simplified specimen, i.e. hollow plexiglass block, in order to avoid as many side-effects as possible. Obtained data were processed using both basic and advanced statistics and results were compared with each other. The influence of water content on accuracy of measured data was studied as well as the influence of variation of apparatus' proper arrangement or factual methodics of its usage. The overall coefficient of variation was 4%. There was no trend found in results of error dependence on water content. Comparison with current surveys led to a conclusion, that the studied apparatus can be used for indirect measurement of water content in porous materials, with expectable error and under known conditions. Factual experiments with porous materials are not involved, but are currently under investigation.

Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading

This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.

Biosorption of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Desmodesmus sp.

A vast array of biological materials, especially algae have received increasing attention for heavy metal removal. Algae have been proven to be cheaper, more effective for the removal of metallic elements in aqueous solutions. A fresh water algal strain was isolated from Zoo Lake, Johannesburg, South Africa and identified as Desmodesmus sp. This paper investigates the efficacy of Desmodesmus sp.in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA) water bodies. The biosorption data fitted the pseudo-second order and Langmuir isotherm models. The Langmuir maximum uptakes gave the sequence: Mn2+>Ni2+>Fe2+. The best results for kinetic study was obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ was at 20 ppm, which is about the same concentrations found in contaminated water in the WCA (Fe3+115 ppm, Mn2+ 121 ppm and Ni2+ 26.5 ppm).

Langmuir–Blodgett Films of Polyaniline for Efficient Detection of Uric Acid

Langmuir–Blodgett (LB) films of polyaniline (PANI) grown onto ITO coated glass substrates were utilized for the fabrication of Uric acid biosensor for efficient detection of uric acid by immobilizing Uricase via EDC–NHS coupling. The modified electrodes were characterized by atomic force microscopy (AFM). The response characteristics after immobilization of uricase were studied using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The uricase/PANI/ITO/glass bioelectrode studied by CV and EIS techniques revealed detection of uric acid in a wide range of 0.05 mM to 1.0 mM, covering the physiological range in blood. A low Michaelis–Menten constant (Km) of 0.21 mM indicates the higher affinity of immobilized Uricase towards its analyte (uric acid). The fabricated uric acid biosensor based on PANI LB films exhibits excellent sensitivity of 0.21 mA/mM with a response time of 4 s, good reproducibility, long shelf life (8 weeks) and high selectivity.

Processing, Morphological, Thermal and Absorption Behavior of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites

Thermoplastic starch, polylactic acid glycerol and maleic anhydride (MA) were compounded with natural montmorillonite (MMT) through a twin screw extruder to investigate the effects of different loading of MMT on structure, thermal and absorption behavior of the nanocomposites. X-ray diffraction analysis (XRD) showed that sample with MMT loading 4phr exhibited exfoliated structure while sample that contained MMT 8 phr exhibited intercalated structure. FESEM images showed big lump when MMT loading was at 8 phr. The thermal properties were characterized by using differential scanning calorimeter (DSC). The results showed that MMT increased melting temperature and crystallization temperature of matrix but reduction in glass transition temperature was observed Meanwhile the addition of MMT has improved the water barrier property. The nanosize MMT particle is also able to block a tortuous pathway for water to enter the starch chain, thus reducing the water uptake and improved the physical barrier of nanocomposite.