Dye-Sensitized Solar Cell by Plasma Spray

This paper aims to scale up Dye-sensitized Solar Cell (DSSC) production using a commonly available industrial material – stainless steel - and industrial plasma equipment. A working DSSC electrode formed by (1) coating titania nanotube (TiO2 NT) film on 304 stainless steel substrate using a plasma spray technique; then, (2) filling the nano-pores of the TiO2 NT film using a TiF4 sol-gel method. A DSSC device consists of an anode absorbed photosensitive dye (N3), a transparent conductive cathode with platinum (Pt) nano-catalytic particles adhered to its surface, and an electrolytic solution sealed between the anode and the transparent conductive cathode. The photo-current conversion efficiency of the DSSC sample was tested under an AM 1.5 Solar Simulator. The sample has a short current (Isc) of 0.83 mA cm-2, open voltage (Voc) of 0.81V, filling factor (FF) of 0.52, and conversion efficiency (η) of 2.18% on a 0.16 cm2 DSSC work-piece.

Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films

TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.

Ultrasonic Intensification of the Chemical Degradation of Methyl Violet: An Experimental Study

The sonochemical decolorization and degradation of azo dye Methyl violet using Fenton-s reagent in the presence of a high-frequency acoustic field has been investigated. Dyeing and textile effluents are the major sources of azo dyes, and are most troublesome among industrial wastewaters, causing imbalance in the eco-system. The effect of various operating conditions (initial concentration of dye, liquid-phase temperature, ultrasonic power and frequency and process time) on sonochemical degradation was investigated. Conversion was found to increase with increase in initial concentration, temperature, power level and frequency. Both horntype and tank-type sonicators were used, at various power levels (250W, 400W and 500W) for frequencies ranging from 20 kHz - 1000 kHz. A 'Process Intensification' parameter PI, was defined to quantify the enhancement of the degradation reaction by ultrasound when compared to control (i.e., without ultrasound). The present work clearly demonstrates that a high-frequency ultrasonic bath can be used to achieve higher process throughput and energy efficiency at a larger scale of operation.

Extraction of Phenol, o-Cresol, and p-Cresol from Coal Tar: Effect of Temperature and Mixing

Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as phenol, o-cresol, and p-cresol. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research needed to be done that given the optimum conditions for the separation of phenol, o-cresol, and p-cresol from the coal tar by solvent extraction process. The aim of the present work was to study the effect of two kinds of aqueous were used as solvents: methanol and acetone solutions, the effect of temperature (298, 306, and 313K) and mixing (30, 35, and 40rpm) for the separation of phenol, o-cresol, and p-cresol from coal tar by solvent extraction. Results indicated that phenol, o-cresol, and p-cresol in coal tar were selectivity extracted into the solvent phase and these components could be separated by solvent extraction. The aqueous solution of methanol, mass ratio of solvent to feed, Eo/Ro=1, extraction temperature 306K and mixing 35 rpm were the most efficient for extraction of phenol, o-cresol, and p-cresol from coal tar.

Enrichment of Cr, Mn, Ni and Zn in Surface Soil

The textile industry produces highly coloured effluents containing polar and non-polar compounds. The textile mill run by the Assam Polyester Co-operative Society Limited (APOL) is situated at Rangia, about 55 km from Guwahati (26011' N, 91047' E) in the northern bank of the river Brahmaputra, Assam (India). This unit was commissioned in June 1988 and started commercial production in November 1988. The installed capacity of the weaving unit was 8000 m/day and that of the processing unit was 20,000 m/day. The mill has its own dyeing unit with a capacity of 1500-2000 kg/day. The western side of the mill consists of vast agricultural land and the far northern and southern side of the mill has scattered human population. The eastern side of the mill has a major road for thoroughfare. The mill releases its effluents into the agricultural land in the western side of the mill. The present study was undertaken to assess the impact of the textile mill on surface soil quality in and around the mill with particular reference to Cr, Mn, Ni and Zn. Surface soil samples, collected along different directions at 200, 500 and 1000 m were digested and the metals were estimated with Atomic Absorption Spectrophotometer. The metals were found in the range of: Cr 50.9 – 105.0 mg kg-1, Mn 19.2- 78.6 mg kg-1, Ni 41.9 – 50.6 mg kg-1 and Zn 187.8 – 1095.8 mg kg-1. The study reveals enrichment of Cr, Mn, Ni and Zn in the soil near the textile mill.

Removal of Basic Blue 3 from Aqueous Solution by Adsorption Onto Durio Ziberthinus

Durian husk (DH), a fruit waste, was studied for its ability to remove Basic blue 3 (BB3) from aqueous solutions. Batch kinetic studies were carried out to study the sorption characteristics under various experimental conditions. The optimum pH for the dye removal occurred in the pH range of 3-10. Sorption was found to be concentration and agitation dependent. The kinetics of dye sorption fitted a pseudo-second order rate expression. Both Langmuir and Freundlich models appeared to provide reasonable fittings for the sorption data of BB3 on durian husk. Maximum sorption capacity calculated from the Langmuir model is 49.50 mg g-1.

Reducing Variation of Dyeing Process in Textile Manufacturing Industry

This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.

Performance of an Electrocoagulation Process in Treating Direct Dye: Batch and Continuous Upflow Processes

This study presents an investigation of electrochemical variables and an application of the optimal parameters in operating a continuous upflow electrocoagulation reactor in removing dye. Direct red 23, which is azo-based, was used as a representative of direct dyes. First, a batch mode was employed to optimize the design parameters: electrode type, electrode distance, current density and electrocoagulation time. The optimal parameters were found to be iron anode, distance between electrodes of 8 mm and current density of 30 A·m-2 with contact time of 5 min. The performance of the continuous upflow reactor with these parameters was satisfactory, with >95% color removal and energy consumption in the order of 0.6-0.7 kWh·m-3.

Effect of Process Parameters on Aerobic Decolourization of Reactive Azo Dye using Mixed Culture

In the present study, an attempt was made to examine the potential of aerobic mixed culture for decolourization of Remazol Black B dye in batch reactors. The effect of pH, temperature, inoculum, initial concentration of dye and initial concentration of glucose was studied with an aim to determine the optimal conditions required for maximum decolourization and degradation. The culture exhibited maximum decolourization ability at pH between 7-8 and at 30°C. A 10% (v/v) inoculum and 1% (w/v) glucose concentration were found to be the optimum for decolourization. A maximum of 98% decolourization was observed at 25 ppm initial concentration of dye after 18 hours of incubation period. At higher dye concentration of 300 ppm, the removal in colour was found to be 75% in 48 hours of incubation period. The results show that the enriched mixed culture from activated sludge has good potential in removal of Remazol Black B dye from wastewater under aerobic conditions.

Theoretical Investigation of Carbazole-Based D-D-π-A Organic Dyes for Efficient Dye-Sensitized Solar Cell

In this paper, four carbazole-based D-D-π-A organic dyes code as CCT2A, CCT3A, CCT1PA and CCT2PA were reported. A series of these organic dyes containing identical donor and acceptor group but different π-system. The effect of replacing of thiophene by phenyl thiophene as π-system on the physical properties has been focused. The structural, energetic properties and absorption spectra were theoretically investigated by means of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). The results show that nonplanar conformation due to steric hindrance in donor part (cabazolecarbazole unit) of dye molecule can prevent unfavorable dye aggregation. By means of the TD-DFT method, the absorption spectra were calculated by B3LYP and BHandHLYP to study the affect of hybrid functional on the excitation energy (Eg). The results revealed the increasing of thiophene units not only resulted in decreasing of Eg, but also found the shifting of absorption spectra to higher wavelength. TD-DFT/BHandHLYP calculated results are more strongly agreed with the experimental data than B3LYP functions. Furthermore, the adsorptions of CCT2A and CCT3A on the TiO2 anatase (101) surface were carried out by mean of the chemical periodic calculation. The result exhibit the strong adsorption energy. The calculated results provide our new organic dyes can be effectively used as dye for Dye Sensitized Solar Cell (DSC).

Effects of the Sintering Process on Properties of Triaxial Electrical Porcelain from Ugandan Ceramic Minerals

Porcelain specimens were fired at 6C/min to 1250C (dwell time 0.5-3h) and cooled at 6C/min to room temperature. Additionally, three different slower firing/cooling cycles were tried. Sintering profile and effects on MOR, crystalline phase content and morphology were investigated using dilatometry, 4-point bending strength, XRD and FEG-SEM respectively. Industrial-sized specimens prepared using the promising cycle were tested basing on the ANSI standards. Increasing dwell time from 1h to 3h at peak temperature of 1250C resulted in neither a significant effect on the quartz and mullite content nor MOR. Reducing the firing/cooling rate to below 6C/min, for peak temperature of 1250C (dwell time of 1h) does not result in improvement of strength of porcelain. The industrial sized specimen exhibited flashover voltages of 20.3kV (dry) and 9.3kV (wet) respectively, transverse strength of 12.5kN and bulk density of 2.27g/cm3, which are satisfactory. There was however dye penetration during porosity test. KeywordsDwell time, Microstructure, Porcelain, Strength.

Sensing Characteristics to Acid Vapors of a TPPS Coated Fiber Optic: A Preliminary Analysis

In this work we report on preliminary analysis of a novel optoelectronic gas sensor based on an optical fiber integrated with a tetrakis(4-sulfonatophenyl)porphyrin (TPPS) thin film. The sensitive materials are selectively deposited on the core region of a fiber tip by UV light induced deposition technique. A simple and cheap process which can be easily extended to different porphyrin derivatives. When the TPPS film on the fiber tip is exposed to acid and/or base vapors, dramatic changes occur in the aggregation structure of the dye molecules in the film, from J- to H-type, resulting in a profound modification of their corresponding reflectance spectra. From the achieved experimental results it is evident that the presence of intense and narrow band peaks in the reflected spectra could be monitored to detect hazardous vapors.

Comparative Study on the Antioxidant Activity of Leaf Extract and Carotenoids Extract from Ipomoea batatas var. Oren (Sweetpotato) Leaves

Ipomoea batatas (Sweetpotato) is currently ranked sixth in the total world food production and are planted mainly for their storage roots. The present study was undertaken to evaluate and compare the antioxidant properties of the leaf and carotenoids extract from the Ipomoea batatas var. Oren leaves. Total flavonoids in the leaf extract was 144.6 ± 40.5 μg/g compared to 114.86 ± 4.35 μg/g catechin equivalent in the carotenoids extract. Total polyphenols in the leaf extracts (3.470 ± 0.024 GAE g/100g DW) was slightly higher compared to carotenoids extract (2.994 ± 0.078 GAE g/100g DW). The carotenoids extract marked a higher radical scavenging capacity with the IC50= 491.86 μg/ml compared to leaf extract (IC50= 545.39 μg/ml). Concentration-dependent reducing activity was observed for both extracts. Thus, the carotenoids extraction process retained most of the antioxidant capacity from the leaves and can be made into potential natural yellow dye with antioxidant property.

Adsorption of Crystal Violet onto BTEA- and CTMA-bentonite from Aqueous Solutions

CTMA-bentonite and BTEA-Bentonite prepared by Na-bentonite cation exchanged with cetyltrimethylammonium(CTMA) and benzyltriethylammonium (BTEA). Products were characterized by XRD and IR techniques.The d001 spacing value of CTMA-bentonite and BTEA-bentonite are 7.54Å and 3.50Å larger than that of Na-bentonite at 100% cation exchange capacity, respectively. The IR spectrum showed that the intensities of OH stretching and bending vibrations of the two organoclays decreased greatly comparing to untreated Na-bentonite. Batch experiments were carried out at 303 K, 318 K and 333 K to obtain the sorption isotherms of Crystal violet onto the two organoclays. The results show that the sorption isothermal data could be well described by Freundlich model. The dynamical data for the two organoclays fit well with pseudo-second-order kinetic model. The adsorption capacity of CTMA-bentonite was found higher than that of BTEA-Bentonite. Thermodynamic parameters such as changes in the free energy (ΔG°), the enthalpy (ΔH°) and the entropy (ΔS°) were also evaluated. The overall adsorption process of Crystal violet onto the two organoclays were spontaneous, endothermic physisorption. The CTMA-bentonite and BTEA-Bentonite could be employed as low-cost alternatives to activated carbon in wastewater treatment for the removal of color which comes from textile dyes.

Thermo-Sensitive Hydrogel: Control of Hydrophilic-Hydrophobic Transition

The study investigated the hydrophilic to hydrophobic transition of modified polyacrylamide hydrogel with the inclusion of N-isopropylacrylamide (NIAM). The modification was done by mimicking micellar polymerization, which resulted in better arrangement of NIAM chains in the polyacrylamide network. The degree of NIAM arrangement is described by NH number. The hydrophilic to hydrophobic transition was measured through the partition coefficient, K, of Orange II and Methylene Blue in hydrogel and in water. These dyes were chosen as a model for solutes with different degree of hydrophobicity. The study showed that the hydrogel with higher NH values resulted in better solubility of both dyes. Moreover, in temperature above the lower critical solution temperature (LCST) of Poly(N-isopropylacrylamide) (PNIAM)also caused the collapse of NIPAM chains which results in a more hydrophobic environment that increases the solubility of Methylene Blue and decreases the solubility of Orange II in the hydrogels with NIPAM present.

Animated Versus Static User Interfaces: A Study of Mathsigner™

In this paper we report a study aimed at determining the effects of animation on usability and appeal of educational software user interfaces. Specifically, the study compares 3 interfaces developed for the Mathsigner™ program: a static interface, an interface with highlighting/sound feedback, and an interface that incorporates five Disney animation principles. The main objectives of the comparative study were to: (1) determine which interface is the most effective for the target users of Mathsigner™ (e.g., children ages 5-11), and (2) identify any Gender and Age differences in using the three interfaces. To accomplish these goals we have designed an experiment consisting of a cognitive walkthrough and a survey with rating questions. Sixteen children ages 7-11 participated in the study, ten males and six females. Results showed no significant interface effect on user task performance (e.g., task completion time and number of errors); however, interface differences were seen in rating of appeal, with the animated interface rated more 'likeable' than the other two. Task performance and rating of appeal were not affected significantly by Gender or Age of the subjects.

Application of Ti/RuO2-SnO2-Sb2O5 Anode for Degradation of Reactive Black-5 Dye

Electrochemical-oxidation of Reactive Black-5 (RB- 5) was conducted for degradation using DSA type Ti/RuO2-SnO2- Sb2O5 electrode. In the study, for electro-oxidation, electrode was indigenously fabricated in laboratory using titanium as substrate. This substrate was coated using different metal oxides RuO2, Sb2O5 and SnO2 by thermal decomposition method. Laboratory scale batch reactor was used for degradation and decolorization studies at pH 2, 7 and 11. Current density (50mA/cm2) and distance between electrodes (8mm) were kept constant for all experiments. Under identical conditions, removal of color, COD and TOC at initial pH 2 was 99.40%, 55% and 37% respectively for initial concentration of 100 mg/L RB-5. Surface morphology and composition of the fabricated electrode coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) respectively. Coating microstructure was analyzed by X-ray diffraction (XRD). Results of this study further revealed that almost 90% of oxidation occurred within 5-10 minutes.

Congo Red Photocatalytic Decolourization using Modified Titanium

A study concerning the photocatalytic decolourization of Congo red (CR) dye, over artificial UV irradiation is presented. Photocatalysts based on a commercial titanium dioxide (TiO2) modified with transition metals (Ni, Cu and Zn) were used. The dopage method used was wet impregnation. A TiO2 sample without salt was subjected to the same hydrothermal treatment to be used as reference. Congo red solutions to several pH conditions (natural and basic) were used to evaluate photocatalytic performance of each doped catalysts. Photodecolourization percentage was measured spectrofotrometically after 3 h of treatment to 499 nm as response variable. Kinetics investigations of photodegradation indicated that reactions obey to Langmuir-Hinshelwood model and pseudo–first order law. The rate constant studies of photocatalytic decolourization reactions for Zn–TiO2 and Cu–TiO2 photocatalysts indicated that in all cases the rate constant of the reaction was higher than that of TiO2 undoped. These results show that nature of the metal modifying the TiO2 influence on the efficiency of the photocatalyst evaluated in process. Ni does not present an additional effect compared with TiO2, while Zn enhances the photoactivity due to its electronic properties.

Adsorption of Phenol, 3-Nitrophenol and Dyes from Aqueous Solutions onto an Activated Carbon Column under Semi-Batch and Continuous Operation

The present study examines the adsorption of phenol, 3-nitrophenol and dyes (methylene blue, alizarine yellow), from aqueous solutions onto a commercial activated carbon. Two different operations, semi-batch and continuous with reflux, were applied. The commercial activated carbon exhibits high adsorption abilities for phenol, 3-nitrophenol and dyes (methylene blue and alizarin yellow) from their aqueous solutions. The adsorption of all adsorbates after 1 h is higher by the continuous operation with reflux than by the semibatch operation. The adsorption of phenol is higher than that of 3-nitrophenol for both operations. Similarly, the adsorption of alizarin yellow is higher than that of methylene blue for both operations. The regenerated commercial activated carbon regains its adsorption ability due to the removal of the adsorbate from its pores during the regeneration.

Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration

A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.