Acid Fuchsin Dye Based PMMA Film for Holographic Investigations

In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Zscan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20o and when the intensity ratio of the writing beams is unity.

Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes, and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 400-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence was obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Semiconductor Supported Gold Nanoparticles for Photodegradation of Rhodamine B

Rhodamine B (RB) is a toxic dye used extensively in textile industry, which must be remediated before its drainage to environment. In the present study, supported gold nanoparticles on commercially available titania and zincite were successfully prepared and then their activity on the photodegradation of RB under UV A light irradiation were evaluated. The synthesized photocatalysts were characterized by ICP, BET, XRD, and TEM. Kinetic results showed that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This observation could be attributed to the strong reflection of UV irradiation by gold nanoparticles over TiO2 support.

Treatment of Simulated Textile Wastewater Containing Reactive Azo Dyes Using Laboratory Scale Trickling Filter

The present study was conducted to evaluate the potential applicability of biological trickling filter system for the treatment of simulated textile wastewater containing reactive azo dyes with bacterial consortium under non-sterile conditions. The percentage decolorization for the treatment of wastewater containing structurally different dyes was found to be higher than 95% in all trials. The stable bacterial count of the biofilm on stone media of the trickling filter during the treatment confirmed the presence, proliferation, dominance and involvement of the added microbial consortium in the treatment of textile wastewater. Results of physicochemical parameters revealed the reduction in chemical oxygen demand (58.5-75.1%), sulphates (18.9-36.5%), and phosphates (63.6-73.0%). UV-Visible and FTIR spectroscopy confirmed decolorization of dye containing wastewater was ultimate consequence of biodegradation. Toxicological studies revealed the nontoxic nature of degradative metabolites.

Removal of Tartrazine Dye form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite

In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.

Morphological Study of Trichomes in Indigofera wightii Grah. ex Wigh & Arn., Indigo Dye Species, Traditionally Used by “Thaisongdam” Thailand

The study aimed to collect morphological data of secretory structures that contribute to taxonomy of Indigofera. Detail features of trichomes occurrence in vegetative and reproductive organs of Indigofera wightii Grah. ex Wigh & Arn., a species traditionally used as source of indigo to dye “Thaisongdam” clothing were investigated. Examination through light microscopy and scanning electrom microscopy were done. Non secretory, T-shaped trichomes appeared throughout surfaces of stems, leaves, flowers and fruits. Secretory or glandular trichomes occurred in two types; one has big cylindrical head and short peduncle, distributed on adaxial surface of sepals and around the pedicel, whereas another possesses smaller cylindrical head but long peduncle. The latter was found on apical surface of immature pods. No phenolic and lipophilic compounds were detected from these glands.

DNA Methylation Changes Caused by Lawsone

Lawsone is a pigment that occurs naturally in plants. It has been used as a skin and hair dye for a long time. Moreover, its different biological activities have been reported. The present study focused on the effect of lawsone on a plant cell model represented by tobacco BY-2 cell suspension culture, which is used as a model comparable with the HeLa cells. It has been shown that lawsone inhibits the cell growth in the concentration-dependent manner. In addition, changes in DNA methylation level have been determined. We observed decreasing level of DNA methylation in the presence of increasing concentrations of lawsone. These results were accompanied with overproduction of reactive oxygen species (ROS). Since epigenetic modifications can be caused by different stress factors, there could be a connection between the changes in the level of DNA methylation and ROS production caused by lawsone.

Electrical Properties of Roystonea regia Fruit Extract as Dye Sensitized Solar Cells

Utilizing solar energy in producing electricity can minimize environmental pollution generated by fossil fuel in producing electricity. Our research was base on the extraction of dye from Roystonea regia fruit by using methanol as solvent. The dye extracts were used as sensitizers in Dye-sensitized solar cell (DSSCs). Study was done on the electrical properties from the extracts of Roystonea regia fruit as Dye-sensitized solar cell (DSSCs). The absorptions of the extracts and extracts with dye were determined at different wavelengths (350-1000nm). Absorption peak was observed at 1.339 at wavelength 400nm. The obtained values for methanol extract Roystonea regia extract are, Imp = 0.015mA, Vmp = 12.0mV, fill factor = 0.763, Isc= 0.018 mA and Voc = 13.1 mV and efficiency of 0.32%. .The phytochemical screening was taken and it was observed that Roystonea regia extract contained less of anthocyanin compared to flavonoids. The nanostructured dye sensitized solar cell (DSSC) will provide economically credible alternative to present day silicon p–n junction photovoltaic.

Layer-by-Layer Deposition of Poly (Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric. Electrostatic and Thermal Properties

The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20oC). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.

Flow Control around Bluff Bodies by Attached Permeable Plates

The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0o, 15o, 30o, 45o, 60o) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45oand 60o which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.

Textile Dyeing with Natural Dye from Sappan Tree (Caesalpinia sappan Linn.) Extract

Natural dye extracted from Caesalpinia sappan Linn. was applied to a cotton fabric and silk yarn by dyeing process. The dyestuff component of Caesalpinia sappan Linn. was extracted using water and ethanol. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. Brazilein, the major dyestuff component of Caesalpinia sappan Linn. was confirmed in both aqueous and ethanolic extracts by UV–VIS spectrum. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordant had a shade of reddish-brown, while those post-mordanted with aluminum potassium sulfate, ferrous sulfate and copper sulfate produced a variety of wine red to dark purple color shades. Cotton fabric and silk yarn dyeing was studied using aluminum potassium sulfate as a mordant. The observed color strength was enhanced with increase in mordant concentration.

Study of the Azo Hydrazone Tautomerism in the 4-(9-Anthrylazo) Phenol

The spectroscopic study on 4-(9-anthrylazo) phenol has revealed that the azo dye under study exists in two tautomeric forms which are azo phenol and hydrazo keto forms in ratio of almost (1:1). The azo hydrazone tautomerism was confirmed by the use of IR spectroscopy and HNMR in which the characteristic absorption bands and chemical shifts for both tautomers were assigned.

TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450oC. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO2 or halloysite-TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Rapid Detection System of Airborne Pathogens

We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above “mist labeling”. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.

Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater

The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment - as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high color, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of color. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pretreated by electrochemical oxidation method where the process limits objectionable color while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.

Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Anthraquinone Dyes

Magnesium chloride, though cost wise roughly same as of ferrous sulphate, is less commonly used coagulant in comparison to the ferrous sulphate for the treatment of wastewater. The present study was conducted to investigate the comparative effectiveness of ferrous sulphate (FeSO4.7H2O) as iron based salt and magnesium chloride (MgCl2) as magnesium based salt in terms of decolorization and chemical oxygen demand (COD) reduction efficiency of textile wastewater. The coagulants were evaluated for synthetic textile wastewater containing two diazo dyes namely Reactive Black 5 (RB5) and Congo Red (CR) and one anthraquinone dye as Disperse Blue 3 (DB3), in seven possible equi-ratio combinations. Other chemical constituents that are normally released from different textile processing units were also added to replicate a practical scenario. From this study, MgCl2/Lime was found to be a superior coagulant system as compared to FeSO4.7H2O/Lime, FeSO4.7H2O/NaOH and MgCl2/NaOH.

Study of Methylene Blue Dye Adsorption on to Activated Carbons from Olive Stones

Activated carbons were produced from olive stones by a chemical process. The activated carbon (AC) were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The activated carbons were characterized by nitrogen adsorption and enthalpy of immersion. Batch adsorption experiments were carried out to study the effect of initial different concentrations solution on dye adsorption properties. Isotherms were fitted to Langmuir model, and corresponding parameters were determined. The results showed that the increase of ration of ZnCl2 leads to increase in apparent surface areas and produces activated carbons with pore structure more developed. However, the maximum MB uptakes for all carbons were determined and correlated with activated carbons characteristics. 

Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders

The present study explores flow visualization experiments with various blunt shaped bluff bodies placed inside a circular pipe. The bodies mainly comprise of modifications of trapezoidal cylinder, most widely used in practical applications, such as vortex flowmeters. The present configuration possesses the feature of both internal and external flows with low aspect ratio. The vortex dynamics of bluff bodies in such configuration is seldom reported in the literature. Dye injection technique is employed to visualize the complex vortex formation mechanism behind the bluff bodies. The influence of orientation, slit and after body shape is studied in an attempt to obtain better understanding of the vortex formation mechanism. Various wake parameters like Strouhal number, vortex formation length and wake width are documented for these shapes. Vortex formation both with and without shear layer interaction is observed for most of the shapes.

Vincristine-Dextran Complex Loaded Solid Lipid Nanoparticles for Drug Delivery to the Brain

The purpose of this work was to inspect the potential of vincristine-dextran complex loaded solid lipid nanoparticles for drug delivery to the brain. The nanoparticles were stained with a fluorescence dye and their plasma pharmacokinetic and brain concentrations were investigated following injection to rats. The result revealed a significant improvement in the plasma concentration profile of the SLN injected animals as well as a sharp increased concentration in the brains.

Microwave Assisted Fast Synthesis of Flower-like ZnO Based Guanidinium Template for Photodegradation of Azo Dye Congo Red

ZnO nanostructure were synthesized via microwave method using zinc acetate as starting material, guanidinium as structure directing agents, and water as solvent.. This work investigates the photodegradation of azo dyes using the ZnO Flowerlike in aqueous solutions. As synthesized ZnO samples were characterized using X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), and FTIR spectroscopy.In this work photodecolorization of congored azo dye under UV irradiation by nano ZnO was studied.