Microbial Contaminants in Drinking Water Collected from Different Regions of Kuwait

Water plays a major role in maintaining life on earth, but it can also serve as a matrix for pathogenic organisms, posing substantial health threats to humans. Although, outbreaks of diseases attributable to drinking water may not be common in industrialized countries, they still occur and can lead to serious acute, chronic, or sometimes fatal health consequences. The analysis of drinking water samples from different regions of Kuwait was performed in this study for bacterial and viral contaminations. Drinking tap water samples were collected from 15 different locations of the six Kuwait governorates. All samples were analyzed by confocal microscopy for the presence of bacteria. The samples were cultured in vitro to detect cultivable organisms. DNA was isolated from the cultured organisms and the identity of the bacteria was determined by sequencing the bacterial 16S rRNA genes, followed by BLAST analysis in the database of NCBI, USA. RNA was extracted from water samples and analyzed by real-time PCR for the detection of viruses with potential health risks, i.e. Astrovirus, Enterovirus, Norovirus, Rotavirus, and Hepatitis A. Confocal microscopy showed the presence of bacteria in some water samples. The 16S rRNA gene sequencing of culture grown organisms, followed by BLAST analysis, identified the presence of several non-pathogenic bacterial species. However, one sample had Acinetobacter baumannii, which often causes opportunistic infections in immunocompromised people, but none of the studied viruses could be detected in the drinking water samples analyzed. The results indicate that drinking water samples analyzed from various locations in Kuwait are relatively safe for drinking and do not contain many harmful pathogens.

Survey of Potato Viral Infection Using Das-Elisa Method in Georgia

Plant viruses can cause loss of yield and quality in a lot of important crops. Symptoms of pathogens are variable depending on the cultivars and virus strain. Selection of resistant potato varieties would reduce the risk of virus transmission and significant economic impact. Other way to avoid reduced harvest yields is regular potato seed production sampling and testing for viral infection. The aim of this study was to determine the occurrence and distribution of viral diseases according potato cultivars for further selection of virus-free material in Georgia. During the summer 2015- 2016, 5 potato cultivars (Sante, Laura, Jelly, Red Sonia, Anushka) at 5 different farms located in Akhalkalaki were tested for 6 different potato viruses: Potato virus A (PVA), Potato virus M (PVM), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY) and potato leaf roll virus (PLRV). A serological method, Double Antibody Sandwich-Enzyme linked Immunosorbent Assay (DASELISA) was used at the laboratory to analyze the results. The result showed that PVY (21.4%) and PLRV (19.7%) virus presence in collected samples was relatively high compared to others. Researched potato cultivars except Jelly and Laura were infected by PVY with different concentrations. PLRV was found only in three potato cultivars (Sante, Jelly, Red Sonia) and PVM virus (3.12%) was characterized with low prevalence. PVX, PVA and PVS virus infection was not reported. It would be noted that 7.9% of samples were containing PVY/PLRV mix infection. Based on the results it can be concluded that PVY and PLRV infections are dominant in all research cultivars. Therefore significant yield losses are expected. Systematic, long-term control of potato viral infection, especially seed-potatoes, must be regarded as the most important factor to increase seed productivity.

Cloning, Expression and Protein Purification of AV1 Gene of Okra Leaf Curl Virus Egyptian Isolate and Genetic Diversity between Whitefly and Different Plant Hosts

Begomoviruses are economically important plant viruses that infect dicotyledonous plants and exclusively transmitted by the whitefly Bemisia tabaci. Here, replicative form was isolated from Okra, Cotton, Tomato plants and whitefly infected with Begomoviruses. Using coat protein specific primers (AV1), the viral infection was verified with amplicon at 450 bp. The sequence of OLCuV-AV1 gene was recorded and received an accession number (FJ441605) from Genebank. The phylogenetic tree of OLCuV was closely related to Okra leaf curl virus previously isolated from Cameroon and USA with nucleotide sequence identity of 92%. The protein purification was carried out using His-Tag methodology by using Affinity Chromatography. The purified protein was separated on SDS-PAGE analysis and an enriched expected size of band at 30 kDa was observed. Furthermore, RAPD and SDS-PAGE were used to detect genetic variability between different hosts of okra leaf curl virus (OLCuV), cotton leaf curl virus (CLCuV), tomato yellow leaf curl virus (TYLCuV) and the whitefly vector. Finally, the present study would help to understand the relationship between the whitefly and different economical crops in Egypt.

Two and Three Layer Lamination of Nanofiber

For their exceptional properties nanofibers, respectively, nanofiber layers are achieving an increasingly wider range of uses. Nowadays nanofibers are used mainly in the field of air filtration where they are removing submicron particles, bacteria, and viruses. Their efficiency is not changed in time, and the power consumption is much lower than that of electrically charged filters. Nanofibers are primarily used for converting and storage of energy in both air and liquid filtration, in food and packaging, protecting the environment, but also in health care which is made possible by their newly discovered properties. However, a major problem of the nanofiber layer is practically zero abrasion resistance; it is, therefore, necessary to laminate the nanofiber layer with another suitable material. Unfortunately, lamination of nanofiber layers is a major problem since the nanofiber layer contains small pores through which it is very difficult for adhesion to pass through. Therefore, there is still only a small percentage of products with these unique fibers 5.

Biosecurity Control Systems in Two Phases for Poultry Farms

In this work was developed and implemented a thermal fogging disinfection system to counteract pathogens from poultry feces in agribusiness farms, to reduce mortality rates and increase biosafety in them. The control system consists of two phases for the conditioning of the farm during the sanitary break. In the first phase, viral and bacterial inactivation was performed by treating the stool dry cleaning, along with the development of a specialized product that foster the generation of temperatures above 55 °C in less than 24 hr, for virus inactivation. In the second phase, a process for disinfection by fogging was implemented, along with the development of a specialized disinfectant that guarantee no risk for the operators’ health or birds. As a result of this process, it was possible to minimize the level of mortality of chickens on farms from 12% to 5.49%, representing a reduction of 6.51% in the death rate, through the formula applied to the treatment of poultry litter based on oxidising agents used as antiseptics, hydrogen peroxide solutions, glacial acetic acid and EDTA in order to act on bacteria, viruses, micro bacteria and spores.

Industrial Wastewater Sludge Treatment in Chongqing, China

Sludge originates from the process of treatment of wastewater. It is the byproduct of wastewater treatment containing concentrated heavy metals and poorly biodegradable trace organic compounds, as well as potentially pathogenic organisms (viruses, bacteria, etc.) which are usually difficult to treat or dispose of. China, like other countries, is no stranger to the challenges posed by increase of wastewater. Treatment and disposal of sludge has been a problem for most cities in China. However, this problem has been exacerbated by other issues such as lack of technology, funding, and other factors. Suitable methods for such climatic conditions are still unavailable for modern cities in China. Against this background, this paper seeks to describe the methods used for treatment and disposal of sludge from industries and suggest a suitable method for treatment and disposal in Chongqing/China. From the research conducted, it was discovered that the highest treatment rate of sludge in Chongqing was 10.08%. The industrial waste piping system is not separated from the domestic system. Considering the proliferation of industry and urbanization, there is a likelihood that the production of sludge in Chongqing will increase. If the sludge produced is not properly managed, this may lead to adverse health and environmental effects. Disposal costs and methods for Chongqing were also included in this paper’s analysis. Research showed that incineration is the most expensive method of sludge disposal in China/Chongqing. Subsequent research therefore considered optional alternatives such as composting. Composting represents a relatively cheap waste disposal method considering the vast population, current technology and economic conditions of Chongqing, as well as China at large.

A Comparative Study of Virus Detection Techniques

The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses.

Development of a New Polymeric Material with Controlled Surface Micro-Morphology Aimed for Biosensors Applications

Compositions of different molar ratios of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) were synthesized via free-radical polymerization. Polymer coated surfaces have been produced on silicon wafers. Coated samples were analyzed by atomic force microscopy (AFM). The results have shown that the roughness of the surfaces have increased by increasing the molar ratio of monomer methacrylic acid (MAA). This study reveals that the gradual increase in surface roughness is due to the fact that carboxylic functional groups have been generated by MAA segments. Such surfaces can be desirable platforms for fabrication of the biosensors for detection of the viruses and diseases.

The Effect of Different Levels of Seed and Extract of Harmal (Peganum harmala L.) on Immune Responses of Broiler Chicks

The present study was carried out to evaluate the effect of different levels of dietary seed and extract of Harmal (Peganum harmala L.) on immunity of broiler chicks. A total of 350 one-day old broiler chicks (Ross 308) were randomly allocated to five dietary treatments with four replicates pen of 14 birds each. Dietary treatments consisted of control, 1 and 2 g/kg Harmal seed in diet, 100 and 200 mg/L Harmal seed extract in water. Broilers received dietary treatments from 1 to 42 d. Two birds from each pen were randomly weighed and sacrificed at 42 d of age, the relative weight of lymphoid organs (bursa of Fabercius and spleen) to live weight were calculated. Antibody titers against Newcastle and influenza viruses and sheep red blood cell were measured at 30 d of age. Results showed that the relative weights of lymphoid organs were not affected by dietary treatments. Furthermore, antibody titer against Newcastle and influenza viruses as well as sheep red blood cell antigen were significantly (P

Oncological Management of Medulloblastoma and New Viral Therapeutic Targets

Medulloblastoma (MB) is one of the most prevalent brain tumours among paediatrics. Although its management has evolved over time still there is need to find new therapeutic targets for MB that can result in less normal tissue toxicity while improving survival and reducing recurrence. This literature review is aimed at finding new potential therapeutic targets for MB focusing on viruses that can be used as potential targets for MB. The review also gives an over-view of management of paediatric Medulloblastoma focusing on Radiotherapy management.

Rapid Detection System of Airborne Pathogens

We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above “mist labeling”. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.

Web–Based Tools and Databases for Micro-RNA Analysis: A Review

MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.

Molecular Detection and Characterization of Infectious Bronchitis Virus from Libya

Infectious bronchitis virus (IBV) is a very dynamic and evolving virus, causing major economic losses to the global poultry industry. Recently, the Libyan poultry industry faced severe outbreak of respiratory distress associated with high mortality and dramatic drop in egg production. Tracheal and cloacal swabs were analyzed for several poultry viruses. IBV was detected using SYBR Green I real-time PCR detection based on the nucleocapsid (N) gene. Sequence analysis of the partial N gene indicated high similarity (~ 94%) to IBV strain 3382/06 that was isolated from Taiwan. Even though the IBV strain 3382/06 is more similar to that of the Mass type H120, the isolate has been implicated associated with intertypic recombinant of 3 putative parental IBV strains namely H120, Taiwan strain 1171/92 and China strain CK/CH/LDL/97I. Complete sequencing and antigenicity studies of the Libya IBV strains are currently underway to determine the evolution of the virus and its importance in vaccine induced immunity. In this paper we documented for the first time the presence of possibly variant IBV strain from Libya which required dramatic change in vaccination program.

Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks

HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.

Molecular Dynamics Study on Laninamivir Inhibiting Neuraminidases of H5N1 and pH1N1 Influenza a Viruses

Viral influenza A subtypes H5N1 and pandemic H1N1 (pH1N1) have worldwide emerged and transmitted. The most common anti-influenza drug for treatment of both seasonal and pandemic influenza viruses is oseltamivir that nowadays becomes resistance to influenza neuraminidase. The novel long-acting drug, laninamivir, was discovered for treatment of the patients infected with influenza B and influenza A viruses. In the present study, laninamivir complexed with wild-type strain of both H5N1 and pH1N1 viruses were comparatively determined the structures and drug-target interactions by means of molecular dynamics (MD) simulations. The results show that the hydrogen bonding interactions formed between laninamivir and its binding residues are likely similar for the two systems. Additionally, the presence of intermolecular interactions from laninamivir to the residues in the binding pocket is established through their side chains in accordance with hydrogen bond interactions.

Chikungunya Protease Domain–High Throughput Virtual Screening

Chikungunya virus (CHICKV) is an arboviruses belonging to family Tagoviridae and is transmitted to human through by mosquito (Aedes aegypti and Aedes albopictus) bite. A large outbreak of chikungunya has been reported in India between 2006 and 2007, along with several other countries from South-East Asia and for the first time in Europe. It was for the first time that the CHICKV outbreak has been reported with mortality from Reunion Island and increased mortality from Asian countries. CHICKV affects all age groups, and currently there are no specific drugs or vaccine to cure the disease. The need of antiviral agents for the treatment of CHICKV infection and the success of virtual screening against many therapeutically valuable targets led us to carry out the structure based drug design against Chikungunya nSP2 protease (PDB: 3TRK). Highthroughput virtual screening of publicly available databases, ZINC12 and BindingDB, has been carried out using the Openeye tools and Schrodinger LLC software packages. Openeye Filter program has been used to filter the database and the filtered outputs were docked using HTVS protocol implemented in GLIDE package of Schrodinger LLC. The top HITS were further used for enriching the similar molecules from the database through vROCS; a shape based screening protocol implemented in Openeye. The approach adopted has provided different scaffolds as HITS against CHICKV protease. Three scaffolds: Indole, Pyrazole and Sulphone derivatives were selected based on the docking score and synthetic feasibility. Derivatives of Pyrazole were synthesized and submitted for antiviral screening against CHICKV.

Evaluation Method for Information Security Levels of CIIP (Critical Information Infrastructure Protection)

As the information age matures, major social infrastructures such as communication, finance, military and energy, have become ever more dependent on information communication systems. And since these infrastructures are connected to the Internet, electronic intrusions such as hacking and viruses have become a new security threat. Especially, disturbance or neutralization of a major social infrastructure can result in extensive material damage and social disorder. To address this issue, many nations around the world are researching and developing various techniques and information security policies as a government-wide effort to protect their infrastructures from newly emerging threats. This paper proposes an evaluation method for information security levels of CIIP (Critical Information Infrastructure Protection), which can enhance the security level of critical information infrastructure by checking the current security status and establish security measures accordingly to protect infrastructures effectively.

Advanced Polymorphic Techniques

Nowadays viruses use polymorphic techniques to mutate their code on each replication, thus evading detection by antiviruses. However detection by emulation can defeat simple polymorphism: thus metamorphic techniques are used which thoroughly change the viral code, even after decryption. We briefly detail this evolution of virus protection techniques against detection and then study the METAPHOR virus, today's most advanced metamorphic virus.

Fungal Disinfection by Nanofiltration in Tomato Soilless Culture

Principally, plants grown in soilless culture may be attacked by the same pests and diseases as cultivated traditionally in soil. The most destructive phytopathogens are fungi, such as Phythium, Phytophthora and Fusarium, followed by viruses, bacteria and nematodes. We investigated effect of carbon nanotube filters on disease management of soilless culture. Tomato seedlings transplant in plastic pots filled with a soilless media of vermiculite. The crop irrigated and fertilized using a hydroponic nutrient solution. We used carbon nanotube filters for nutrient solution disinfection. Our results show that carbon nanotube filtration significantly reduces pathogens on tomato plants. Fungal elimination (Fusarium oxysporum and Pythium spp.) was usually successful at about 96 to 99.9% all over the cultural season. It is seem that in tomato soilless culture, nanofiltration constitutes a reliable method that allows control of the development of diseases caused by pathogenic fungi

Protocol and Method for Preventing Attacks from the Web

Nowadays, computer worms, viruses and Trojan horse become popular, and they are collectively called malware. Those malware just spoiled computers by deleting or rewriting important files a decade ago. However, recent malware seems to be born to earn money. Some of malware work for collecting personal information so that malicious people can find secret information such as password for online banking, evidence for a scandal or contact address which relates with the target. Moreover, relation between money and malware becomes more complex. Many kinds of malware bear bots to get springboards. Meanwhile, for ordinary internet users, countermeasures against malware come up against a blank wall. Pattern matching becomes too much waste of computer resources, since matching tools have to deal with a lot of patterns derived from subspecies. Virus making tools can automatically bear subspecies of malware. Moreover, metamorphic and polymorphic malware are no longer special. Recently there appears malware checking sites that check contents in place of users' PC. However, there appears a new type of malicious sites that avoids check by malware checking sites. In this paper, existing protocols and methods related with the web are reconsidered in terms of protection from current attacks, and new protocol and method are indicated for the purpose of security of the web.