Assessing Chemo-Radiotherapy Induced Toxicity and Quality of Life of Cancer Patients

Chemotherapy and radiotherapy are one of the major treatment modalities that play important role in the management of a number of different cancers. This study for the first time evaluates the toxicity of these treatment modalities and its impact on quality of life of cancer patients in Pakistan. The study also for the first time determines what cancer patients of different ages and cancer stages believe would be an effective intervention to manage their psychosocial needs and treatment induced toxicity. The article also provides evidence based approach for the use of variety of interventions to mange cancer treatment induced morbidity and toxicity. In light of the present study and reviewed research data, evidence based recommendations are also made for selection of appropriate interventions to manage Pain, Nausea and Vomiting, Anxiety and Depression, Fatigue and Overall QOL of cancer survivors.

Oncological Management of Medulloblastoma and New Viral Therapeutic Targets

Medulloblastoma (MB) is one of the most prevalent brain tumours among paediatrics. Although its management has evolved over time still there is need to find new therapeutic targets for MB that can result in less normal tissue toxicity while improving survival and reducing recurrence. This literature review is aimed at finding new potential therapeutic targets for MB focusing on viruses that can be used as potential targets for MB. The review also gives an over-view of management of paediatric Medulloblastoma focusing on Radiotherapy management.

A Survey of IMRT and VMAT in UK

Purpose: This E-survey was carried out to facilitate the implementation and Education of VMAT (Volumetric Modulated Arc Therapy) in Radiotherapy-RT departments and reasons for not using IMRT (Intensity Modulated Radiotherapy). VMAT Skills in demand were also identified. Method: E-Survey was distributed to NHS hospitals across UK by email. Thirty NHS and related centres in England, 21 in Scotland, 3 in Ireland and 1 in Wales were contacted. This Survey was intended for those working in RT and Medical Physics and who were responsible for Treatment Planning and training. Results: This E-survey have indicated pathways adopted by staff to acquire VMAT skills, strategies to efficiently implement VMAT in RT departments and for obtaining VMAT Education. Conclusion: Despite poor survey response this survey has managed to highlight requirements for education and implementation of VMAT that are also applicable to IMRT. Other RT centres in world can also find these results useful.

Investigation of VMAT Algorithms and Dosimetry

Purpose: Planning and dosimetry of different VMAT algorithms (SmartArc, Ergo++, Autobeam) is compared with IMRT for Head and Neck Cancer patients. Modelling was performed to rule out the causes of discrepancies between planned and delivered dose. Methods: Five HNC patients previously treated with IMRT were re-planned with SmartArc (SA), Ergo++ and Autobeam. Plans were compared with each other and against IMRT and evaluated using DVHs for PTVs and OARs, delivery time, monitor units (MU) and dosimetric accuracy. Modelling of control point (CP) spacing, Leaf-end Separation and MLC/Aperture shape was performed to rule out causes of discrepancies between planned and delivered doses. Additionally estimated arc delivery times, overall plan generation times and effect of CP spacing and number of arcs on plan generation times were recorded. Results: Single arc SmartArc plans (SA4d) were generally better than IMRT and double arc plans (SA2Arcs) in terms of homogeneity and target coverage. Double arc plans seemed to have a positive role in achieving improved Conformity Index (CI) and better sparing of some Organs at Risk (OARs) compared to Step and Shoot IMRT (ss-IMRT) and SA4d. Overall Ergo++ plans achieved best CI for both PTVs. Dosimetric validation of all VMAT plans without modelling was found to be lower than ss-IMRT. Total MUs required for delivery were on average 19%, 30%, 10.6% and 6.5% lower than ss-IMRT for SA4d, SA2d (Single arc with 20 Gantry Spacing), SA2Arcs and Autobeam plans respectively. Autobeam was most efficient in terms of actual treatment delivery times whereas Ergo++ plans took longest to deliver. Conclusion: Overall SA single arc plans on average achieved best target coverage and homogeneity for both PTVs. SA2Arc plans showed improved CI and some OARs sparing. Very good dosimetric results were achieved with modelling. Ergo++ plans achieved best CI. Autobeam resulted in fastest treatment delivery times.

Use of Magnetic Nanoparticles in Cancer Detection with MRI

Magnetic Nanoparticles (MNPs) have great potential to overcome many of the shortcomings of the present diagnostic and therapeutic approaches used in cancer diagnosis and treatment. This Literature review discusses the use of Magnetic Nanoparticles focusing mainly on Iron oxide based MNPs in cancer imaging using MRI.