Use of Magnetic Nanoparticles in Cancer Detection with MRI

Magnetic Nanoparticles (MNPs) have great potential
to overcome many of the shortcomings of the present diagnostic and
therapeutic approaches used in cancer diagnosis and treatment. This
Literature review discusses the use of Magnetic Nanoparticles
focusing mainly on Iron oxide based MNPs in cancer imaging using
MRI.


Authors:



References:
[1] WHO Factsheet N0 297, Cancer, 2011, Available at:
http://www.who.int/mediacentre/factsheets/fs297/en/index.html.
(Accessed 09/09/2014).
[2] D. Clifton, and R. Charles, “Chemoradiation for anal cancer: The more
things change the more they stay the same,” Oncology, 24, 2010, 427-
30.
[3] D. Bharali, and S. Mousa, “Emerging nanomedicines for early cancer
detection and improved treatment: Current perspectives and future
promise,” Pharmacology & Therapeutics, 128, 2010, 324-335.
[4] M. Takeda, H. Tada, H. Higuchi, Y. Kobayashi, M. Kobayashi, Y.
Sakurai, et al; “In vivo single molecular imaging and sentinel node
navigation by nanotechnology for molecular targeting drug-delivery
systems and tailor-made medicine,” Breast Cancer, 15, 2008, 145-52
[5] Nano.gov National Nanotechnology Initiative, Available at:
http://www.nano.gov/. (Accessed 08/09/2014).
[6] H. Huang, S. Barua, G. Sharma, S. Dey, and K. Rege, “Inorganic
Nanoparticles for cancer imaging and Therapy,” Journal of controlled
Release, 155, 2011, 344-57.
[7] F. Alexis, J. Rhee, J. Richie, A. Radovic-Moreno, R. Langer, O.
Farokhzad, “New frontiers in nanotechnology for cancer treatment,”
Urologic Oncology: Seminars and Original Investigations, 26, 2008,
74–85
[8] L. Johnson, A. Gunasekera, M. Deuek, “Applications of
Nanotechnology in Cancer,” Discovery Medicine, 9, 2010, 374-379,
Available at: http://www.discoverymedicine.com/Laura-Johnson/
2010/04/25/applications-of-nanotechnology-in-cancer/. (Accessed
08/09/2014)
[9] M. Russell, and Y. Anzai, “Ultrasmall superparamagnetic iron oxide
enhanced MR imaging for lymph node metastases,” Radiography, 13,
2007, e73-e84
[10] I. Pantic, “Magnetic nanoparticles in cancer diagnosis and treatment:
Novel Approaches,” Reviews on Advanced Materials Science, 26, 2010,
67-73.
[11] D. Huber, “Synthesis, properties, and applications of iron
Nanoparticles,” Small, 1, 2005, 482–501. Available at:
http://onlinelibrary.wiley.com/doi/10.1002/smll.200500006/pdf.
(Accessed 08/09/2014).
[12] A. Figuerola, R. Corato, L. Manna, and T. Pellegrino, “From iron oxide
nanoparticles towards advanced iron-based inorganic materials designed
for biomedical applications,” Pharmaceutical Research, 62-2010, 126-
143
[13] C. Sun, J. Lee, and M. Zhang, “Magnetic nanoparticles in MR imaging
and drug delivery,” Advanced Drug Delivery Reviews, 60, 2008, 1252–
1265.
[14] M. Tang, P. Russell, A Khatri, “Magnetic nanoparticles: Prospects in
Cancer Imaging and Therapy,” Discovery Medicine, 7, 2009, 68-74.
Available at: http://www.discoverymedicine.com/Monica-Tang/2009/
07/29/magnetic-nanoparticles-prospects-in-cancer-imaging-andtherapy/.
(Accessed 08/09/2014).
[15] K. Kairemo, E. Paola, K. Bergström, and E. Pauwels, “Nanoparticles in
Cancer,” Current Radiopharmaceuticals, 1, 2008, 30-36
[16] H. Maeda, “The enhanced permeability and retention (EPR) effect in
tumor vasculature: the key role of tumor-selective macromolecular drug
targeting,” Advances in Enzyme Regulation, 41,2001, 89-207
[17] R. Weissleder, A. Bogdanov, and M. Papisov, “Drug targeting in
magnetic resonance imaging,” Magnetic Resonance Quarterly, 8,
1992, 55–63.
[18] L. Tauxe, “Essentials of Paleomagnetism: Web Edition, Scripps
Institution of Oceanography,” 2009, Available at:
http://magician.ucsd.edu/essentials/WebBookse18.html#x23-280003.3.
(Accessed 07/09/2014)
[19] A. Teja, and P. Koh, “Synthesis, properties and applications of magnetic
iron oxide Nanoparticles,” Progress in Crystal Growth and
Characterization of Materials, 55, 2009, 22-45
[20] MRI Tutor, Available at: http://www.mritutor.org/mritutor/superpar.htm.
(Accessed 07/09/2014)
[21] A. Lu, E. Salabas, and F. Schuth, “Magnetic nanoparticles: synthesis,
protection, functionalization, and application,” Angewandte Chemie.
International Edition, 46, 2007, 1222–1244
[22] S. Maenosono, T. Suzuki, and S. Saita, “Superparamagnetic FePt
nanoparticles as excellent MRI contrast agents,” Journal of Magnetism
and Magnetic Materials, 320, 2008, L79–L83.
[23] W. Seo, J. Lee, X. Sun, Y. Suzuki, D. Mann, and Z. Liu, et al., (2006)
“FeCo/graphitic-shell nanocrystals as advanced magnetic-resonanceimaging
and near-infrared agents,” Nature Materials, 5, 2006, 971–976
[24] A. Gupta, and M. Gupta, “Synthesis and surface engineering of Iron
Oxide Nanoparticles for biomedical applications,” Biomaterials, 26,
2005, 3995-4021
[25] B. Chertok, A. David, V. Yang, 2011 ‘Brain tumor targeting of magnetic
nanoparticles for potential drug delivery: Effect of administration route
and magnetic field topography, Journal of Controlled Release, 155,
2011, 393-9.
[26] M. Yallapu, S. Othman, E. Curtis, B. Gupta, M. Jaggi, and S. Chauhan,
“Multi-functional magnetic nanoparticles for magnetic resonance
imaging and cancer therapy,” Biomaterials, 32, 2011, 1890-1905.
[27] S. Benderbous, C. Corot, P. Jacobs, B. Bonnemain, “Superparamagnetic
agents: physicochemical characteristics and preclinical imaging
evaluation,” Academic Radiology, 3, Suppl 2, 1996, S292-4
[28] Y. Zhang, N. Kohler, and M. Zhang, (2002) ‘Surface modification of
superparamagnetic magnetite Nanoparticles and their intracellualr
uptake,” Biomaterials, 23, 2002, 1553-61.
[29] O. Veiseh, J. Gunn, M. Zhang, “Design and Fabrication of magnetic
nanoparticles for targeted drug delivery and imaging,” Advanced Drug
Delivery Reviews, 62, 2010, 284-304
[30] H. Choi, W. Liu, P. Misra, P. Tanaka, J. Zimmer, B. Ipe, M. Bawendi,
and J. Frangioni, “Renal clearance of quantum dots,” Nature
Biotechnology, 25, 2007, 1165–1170
[31] S. Moghimi, A. Hunter, and J. Murray, “Long-circulating and targetspecific
nanoparticles: Theory to practice,” Pharmacological Reviews,
53, 2001, 283–318
[32] T. Banerjee, S. Mitra, A. Singh, R. Sharma, and A. Maitra, “Preparation,
characterization and biodistribution of ultrafine chitosan Nanoparticles,”
International Journal of Pharmaceutics, 243, 2002, 93–105
[33] S. Moghimi, “ Exploiting Bone-marrow microvascular structure for drug
delivery and future therapies,” Advanced Drug Delivery Reviews, 17,
1995, 61–73
[34] I. Brigger, J. Morizet, G. Aubert, H. Chacun, M.-J. Terrier-Lacombe, P.
Couvreur and G. Vassal, “Poly(ethylene glycol)-coated
hexadecylcyanoacrylate nanospheres display a combined effect for brain
tumour targeting,” The Journal of Pharmacology and Experimental
Therapeutics, 303 2002, 928–936.
[35] E. Neuwelt, P. Varallyay, A. Bago, L. Muldoon, G. Nesbit, and R.
Nixon, “Imaging of iron oxide nanoparticles by MR and light
microscopy in patients with malignant brain tumours,” Neuropathology
and Applied, Neurobiology., 30, 2004, 456–471
[36] D. Begley, “Delivery of therapeutic agents to the central nervous system:
the problems and the possibilities,” Pharmacology and Therapeutics,
104, 2004, 29–45.
[37] Y. Koo, G. Reddy, M. Bhojani, R. Schneider, M. Philbert, A.
Rehemtulla et al., “Brain cancer diagnosis and therapy with
Nanoplatforms,” Advanced drug delivery Reviews, 58, 2006, 1556-1577.
[38] R. Lucarelli, M. Ogawa, N. Kosaka, B. Turkbey, H. Kobayashi, P.
Choyke, “New Approaches to Lymphatic Imaging,” Lymphatic
Research and Biology, 7, 2009, 205–214
[39] L. Wu, Y. Cao, C. Liao, J. Huang, F. Gao, “Diagnostic performance of
USPIO-enhanced MRI for Lymph node metastases in different body
regions: A meta-analysis,” European Journal of Radiology, 80, 2011,
582-9.
[40] M. Harisinghani, J. Barentsz, P. Hahn, W. Deserno, M.D., S. Tabatabaei,
C. van de Kaa, J. Rosette, and R. Weissleder, “Noninvasive Detection of
Clinically Occult Lymph-Node Metastases in Prostate Cancer,” The New
England Journal of Medicine, 348, 2003, 2491-2499
[41] L. Curvo-Semedo, M. Diniz, J. Migueis, M. Juliao, P. Martins and A.
Pinto, et al., “USPIO-enhanced magnetic resonance imaging for nodal
staging in patients with head and neck cancer,” Journal of Magnetic
Resonance Imaging, 24, 2006, 123–131
[42] Y. Anzai, C. Piccoli, E. Outwater, W. Stanford, D. Bluemke and P.
Nurenberg, et al. “Evaluation of neck and body metastases to nodes with
ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy
study,” Radiology, 228,2003, 777–788
[43] T. Harada, N. Tanigawa, M. Matsuki, T. Nohara, and I. Narabayashi,
“Evaluation of Lymph node metastases of breast cancer using ultrasmall
superparamagnetic iron oxide enhanced magnetic resonance imaging,”
European Journal of Radiology, 63, 2007, 401-407
[44] M. Deserno, M. Harisinghani, M. Taupitz, G. Jager, J. Witjes , P.
Mulders, et al., “Urinary bladder cancer: preoperative nodal staging with
ferumoxtran-10-enhanced MR imaging,” Radiology, 233, 2004, 449–
456.
[45] A. Rockall, S. Sohaib, M. Harisinghani, S. Babar, N. Singh, and A.
Jeyarajah, et al., “Diagnostic performance of nanoparticle-enhanced
magnetic resonance imaging in the diagnosis of Lymph node metastases
in patients with endometrial and cervical cancer,” Journal of Clinical
Oncology, 23, 2005, 2813–2821
[46] O. Will, S. Purkayastha, and C. Chan, T. Athanasiou, A. Darzi, W.
Gedroyc et al., “Diagnostic precision of nanoparticle-Enhanced MRI for
lymph-node metastases: a meta-analysis,” The Lancet Oncology, 7,
2006, 52–60.
[47] Y. Ling, K. Wei, Y. Luo, X. Gao, and S. Zhong, “Dual
docetaxel/superparamagnetic iron oxide loaded nanoparticles for both
targeting magnetic resonance imaging and cancer therapy,”
Biomaterials, 32, 2011, 7139-7150.
[48] T. Jain, J. Richey, M. Strand, D. Leslie-Pelecky, C. Flask, and V.
Labhasetwar, (2008) ‘Magnetic Nanoparticles with dual functional
properties: Drug delivery and magnetic resonance imaging,
Biomaterials, 29, 2008, 4012-21.
[49] P. Reimer, N. Jahnke, M. Fiebich, W. Schima, F. Deckers, C. Marx, N.
Holzknecht, S. Saini, “Hepatic lesion detection and characterization :
value of Non enhanced MR imaging, Superparamagnetic Iron oxide
enhanced MR imaging, and Spiral CT-ROC Analysis,” Radiology, 217,
2000, 152-8
[50] W. Zheng, K. Zhou, Z. Chen, J. Shen, C. Chen, and S. Zhang,
“Characterization of focal hepatic lesions with SPIO enhanced MRI,”
World journal of Gastroenterology, 8, 2002, 82-6.
[51] P. Reimer, & B. Tombach, “Hepatic MRI with SPIO: Detection and
characterization of focal liver lesions,” European Radiology, 8, 1998,
1198-204.
[52] W. Enochs, G. Harsh, F. Hochberg, and R. Weissleder, “Improved
delineation of human brain tumors on MR images using a longcirculating,
superparamagnetic iron oxide agent,” Journal of. Magnetic.
Resonance. Imaging, 9, 1999, 228-232.
[53] T. Murillo, C. Sandquist, P. Jacobs, G. Nesbit, S. Manninger, and E.
Neuwelt, “Imaging brain tumors with ferumoxtran-10, a nanoparticle
magnetic resonance contrast agent,” Therapy, 2, 2005, 871–882.
[54] E. Peira, P. Marzola, V. Podio, S. Aime, A. Sbarbati, and M. Gasco, “In
vitro and in vivo study of solid lipid Nanoparticles loaded with
superparamagnetic iron oxide,” J. Drug Target. 11(2003) 19–24
[55] M.Kircher, U. Mahmood, R. King, R. Weissleder, and L. Josephson, “A
multimodal nanoparticle for preoperative magnetic resonance imaging
and intraoperative optical braintumor delineation,” Cancer Research. 63,
2003, 8122–5.
[56] O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, et al.,
“Optical and MRI multifunctional nanoprobe for targeting gliomas,”
Nano Letters. 5, 2005, 1003–8.
[57] B. Moffat, G. Reddy, P. McConville, D. Hall, T. Chenevert, M.
Kopelman, et al., “A novel polyacrylamide magnetic nanoparticle
contrast agent for molecular imaging using MRI,” Molecular Imaging,
2, 2003, 324–332.
[58] C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, et al., “In vivo
MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic
nanoprobes,” Small, 4, 2008, 372–379
[59] H. Xie, Y. Zhu, W. Jiang, Q. Zhou, H. Yang H, N. Gu, et al.,
“Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a
specific MRI contrast agent for detection of brain glioma in vivo,”
Biomaterials, 32, 2011, 495-502.
[60] H. Choi, S. Choi, R. Zhou, H. Kung, I. Chen, “Iron oxide nanoparticles
as magnetic resonance contrast agents for tumour imaging via folate
receptor-targeted delivery,” Academic Radiology, 11, 2004, 996-1004.